Représentation métaplectique et conjectures de Howe

Jean-Loup Waldspurger

Séminaire Bourbaki (1986-1987)

  • Volume: 29, page 85-99
  • ISSN: 0303-1179

How to cite

top

Waldspurger, Jean-Loup. "Représentation métaplectique et conjectures de Howe." Séminaire Bourbaki 29 (1986-1987): 85-99. <http://eudml.org/doc/110090>.

@article{Waldspurger1986-1987,
author = {Waldspurger, Jean-Loup},
journal = {Séminaire Bourbaki},
language = {fre},
pages = {85-99},
publisher = {Société Mathématique de France},
title = {Représentation métaplectique et conjectures de Howe},
url = {http://eudml.org/doc/110090},
volume = {29},
year = {1986-1987},
}

TY - JOUR
AU - Waldspurger, Jean-Loup
TI - Représentation métaplectique et conjectures de Howe
JO - Séminaire Bourbaki
PY - 1986-1987
PB - Société Mathématique de France
VL - 29
SP - 85
EP - 99
LA - fre
UR - http://eudml.org/doc/110090
ER -

References

top
  1. [1] A. Albert - Structure of algebras, Amer. Math. Soc. Coll. Publ.XXIV, Providence1961. MR123587JFM65.0094.02
  2. [2] A. Borel, H. Jacquet, Automorphic forms and automorphic representations, in Automorphic forms, representations and L-functions, p. 189-202, Proc. of Symp. in Pure Math.XXXIII, Part 1, AMS, Providence1979. Zbl0414.22020MR546598
  3. [3] F. Bruhat, Représentations des groupes localement compacts 2, cours à Paris7, multigraphié ENS1971. 
  4. [4] M. Eichler, Quadratische Formen und orthogonale Gruppen, Springer, BerlinHeidelbergNew-York1974. Zbl0277.10017MR351996
  5. [5] E. Hecke, Analytische Arithmetik der positiven quadratischen Formen, in Mathematische Werke, Vandenhoeck Ruprecht, Göttingen1970. Zbl0024.00902MR104550
  6. [6] R. Howe, θ-series and invariant theory, in Automorphic forms, representations and L-functions, p.275-286, Proc. of Symp. in Pure Math.XXXIII, Part 1, AMS, Providence1979. Zbl0423.22016
  7. [7] R. Howe, Transcending classical invariant theory, preprint. Zbl0716.22006MR985172
  8. [8] R. Howe, Invariant theory and duality for classical groups over finite fields, with applications to their singular representation theory, preprint. 
  9. [9] M. Kashiwara, M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Inv. Math.44 (1978), 1-47. Zbl0375.22009MR463359
  10. [10] M. Kneser, Approximation in algebraischen Gruppen, Colloque sur la théorie des groupes algébriques, Bruxelles1962. 
  11. [11] S. Kudla, On the local theta correspondence, Inv. Math.83 (1986), 229-255. Zbl0583.22010MR818351
  12. [12] G. Lion, M. Vergne, The Weil representation, Maslov index and theta series, Progress in Math.6, Birkhäuser, BostonBaselStuttgart1980. Zbl0444.22005MR573448
  13. [13] G. Mackey, A theorem of Stone and Von Neumann, Duke Math. J.16 (1949) 313-326. Zbl0036.07703MR30532
  14. [14] J. Von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann.104 (1931), 570-578. Zbl0001.24703MR1512685
  15. [15] P. Perrin, Représentations de Schrödinger, indice de Maslov et groupe métaplectique, in Non commutative harmonic analysis and Lie groups, Proc. Marseille-Luminy1980, Springer LN880, BerlinHeidelbergNew-York. Zbl0462.22008MR644841
  16. [16] S. Rallis, On the Howe duality conjecture, Comp. Math.51 (1984), 333-399. Zbl0624.22011MR743016
  17. [17] S. Rallis, Injectivity properties of liftings associated to Weil representations, Comp. Math.52 (1984), 139-169. Zbl0624.22012MR750352
  18. [18] R. Rad, On some explicit formulas in the theory of Weil representations, preprint. 
  19. [19] C. Siegel, Gesammelte Abhandlungen I, Springer1966. Zbl0143.00101MR197270
  20. [20] M. Stone, Linear transformations in Hilbert space III, operational methods and group theory, Proc. Nat. Acad. Sci. USA16 (1930), 172-175. Zbl56.0357.01JFM56.0357.01
  21. [21] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math.111, (1964), 143-211. Zbl0203.03305MR165033
  22. [22] A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math.113 (1965), 1-87. Zbl0161.02304MR223373

NotesEmbed ?

top

You must be logged in to post comments.