Transversality of generic projections and seminormality of the image hypersurfaces

Joel Roberts; Rahim Zaare-Nahandi

Compositio Mathematica (1984)

  • Volume: 52, Issue: 2, page 211-220
  • ISSN: 0010-437X

How to cite

top

Roberts, Joel, and Zaare-Nahandi, Rahim. "Transversality of generic projections and seminormality of the image hypersurfaces." Compositio Mathematica 52.2 (1984): 211-220. <http://eudml.org/doc/89661>.

@article{Roberts1984,
author = {Roberts, Joel, Zaare-Nahandi, Rahim},
journal = {Compositio Mathematica},
keywords = {seminormality; Singularities of generic projections; hypersurfaces with smooth normalizations},
language = {eng},
number = {2},
pages = {211-220},
publisher = {Martinus Nijhoff Publishers},
title = {Transversality of generic projections and seminormality of the image hypersurfaces},
url = {http://eudml.org/doc/89661},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Roberts, Joel
AU - Zaare-Nahandi, Rahim
TI - Transversality of generic projections and seminormality of the image hypersurfaces
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 2
SP - 211
EP - 220
LA - eng
KW - seminormality; Singularities of generic projections; hypersurfaces with smooth normalizations
UR - http://eudml.org/doc/89661
ER -

References

top
  1. [1] A. Andreotti and P. Holm: Quasianalytic and parametric spaces. In: P. Holm (ed.), Real and Complex Spaces, Oslo1976, Sijthoff and Noordhoff (1978) pp. 13-97. Zbl0376.32025MR589903
  2. [2] E. Bombieri: Seminormalità e singolarità ordinarie, Symposia Mathematica11 (1973) 205-210. Zbl0294.14015MR429874
  3. [3] E. Davis: On the geometric interpretation of seminormality, Proc. Amer. Math. Soc.68 (1978) 1-5. Zbl0386.13012MR453748
  4. [4] T. Fujita and J. Roberts: Varieties with small secant varieties: the extremal case, Amer. J. Math.103 (1981) 953-976. Zbl0475.14046MR630774
  5. [5] S. Greco and C. Traverso: On seminormal schemes, Comp. Math.40 (1980) 325-365. Zbl0412.14024MR571055
  6. [6] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52. New York, Heidleberg, Berlin: Springer-Verlag (1977). Zbl0367.14001MR463157
  7. [7] A. Holme and J. Roberts: Pinch points and multiple locus for generic projections of singular varieties, Advances in Math.33 (1979) 212-256. Zbl0499.14022MR546294
  8. [8] D. Laksov: Some enumerative properties of secants to non-singular schemes, Math. Scand.39 (1976) 171-190. Zbl0348.14027MR437532
  9. [9] H. Matsumura: Commutative Algebra. New York: W.A. Benjamin (1970). Zbl0211.06501MR266911
  10. [10] D. Northcott: Some results concerning the local analytic branches of an algebraic variety, Proc. Cambridge Philosophical Soc.49 (1953) 386-396. Zbl0052.37903MR58250
  11. [11] J. Roberts: Ordinary singularities of projective varieties, Ph.D. thesis, Harvard University, 1969. 
  12. [12] J. Roberts: Generic projections of algebraic varieties, Amer. J. Math.93 (1971) 191-214. Zbl0212.53801MR277530
  13. [13] J. Roberts: Hypersurfaces with nonsingular normalization and their double loci, J. Algebra53 (1978) 253-267. Zbl0402.14020MR491676
  14. [14] C. Traverso: Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1970) 585-595. Zbl0205.50501MR277542
  15. [15] R. Zaare-Nahandi: Seminormality of certain generic projections, Ph.D. thesis, University of Minnesota, 1982. Zbl0575.14002
  16. [16] F. Zak: Proiektsiĭ algebraicheskikh mnogoobrazil (Projections of algebraic varieties), Mat. Sbornik116 (158) (1981) 593-602. Zbl0484.14016
  17. [17] O. Zariski and P. Samuel: Commutative Algebra, Graduate Texts in Mathematics, Vol. 28-29. New York, Heidelberg, Berlin: Springer-Verlag, (1975). Zbl0313.13001

NotesEmbed ?

top

You must be logged in to post comments.