Homogeneous-rational manifolds and unique factorization

Manfred Steinsiek

Compositio Mathematica (1984)

  • Volume: 52, Issue: 2, page 221-229
  • ISSN: 0010-437X

How to cite

top

Steinsiek, Manfred. "Homogeneous-rational manifolds and unique factorization." Compositio Mathematica 52.2 (1984): 221-229. <http://eudml.org/doc/89662>.

@article{Steinsiek1984,
author = {Steinsiek, Manfred},
journal = {Compositio Mathematica},
keywords = {homogeneously minimal embedding; homogeneous rational manifold},
language = {eng},
number = {2},
pages = {221-229},
publisher = {Martinus Nijhoff Publishers},
title = {Homogeneous-rational manifolds and unique factorization},
url = {http://eudml.org/doc/89662},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Steinsiek, Manfred
TI - Homogeneous-rational manifolds and unique factorization
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 2
SP - 221
EP - 229
LA - eng
KW - homogeneously minimal embedding; homogeneous rational manifold
UR - http://eudml.org/doc/89662
ER -

References

top
  1. [1] A. Andreotti and P. Salmon: Anneli con unica decomponibilità in fattori primi ed un problema di intersezione complete. Monatshefte Math. Physik61 (1957) 97-142. Zbl0079.15002MR104662
  2. [2] A. Borel: Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. USA40 (1954) 1147-1151. Zbl0058.16002MR77878
  3. [3] A. Borel and R. Remmert: Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann.145 (1962) 429-439. Zbl0111.18001MR145557
  4. [4] A. Borel and A. Weil: Représentations linéaires et espaces homogènes Kählériens des groupes de Lie compacts. Sém. Bourbaki1954, no. 100 (Exposé par J.-P. Serre). Zbl0121.16203
  5. [5] R. Bott: Homogeneous vector bundles. Ann. Math. (2) 66 (1957) 203-248. Zbl0094.35701MR89473
  6. [6] V.I. Danilov: The group of ideal classes of a completed ring. Math. USSR Sb.6 (1968) 493-500. Zbl0186.07302
  7. [7] R.M. Fossum: The divisor class group of a Krull domain. Erg. der Math.74, Springer (1973). Zbl0256.13001MR382254
  8. [8] M. Goto: On algebraic homogeneous spaces. Amer. J. Math.76 (1954) 811-818. Zbl0056.39803MR66396
  9. [9] P.A. Griffiths and J. Harris: Principles of algebraic geometry. New York: Wiley (1978). Zbl0408.14001MR507725
  10. [10] R. Hartshorne: Algebraic geometry. GTM 52, Springer (1977). Zbl0367.14001MR463157
  11. [11] M. Hochster: Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay. J. Algebra25 (1973) 40-57. Zbl0256.14024MR314833
  12. [12] M. Hochster and J.L. Roberts: Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Advances in Math.13 (1974) 115-175. Zbl0289.14010MR347810
  13. [13] J. Igusa: On the arithmetic normality of the Grassmann variety. Proc. Nat. Acad. Sci. USA40 (1954) 309-313. Zbl0055.39002MR61423
  14. [14] I. Kaplansky: Commutative rings. Boston: Allyn and Bacon (1970). Zbl0203.34601MR254021
  15. [15] M. Lazard: Groupes semi-simples: Structure de B et de G/B. Sém. Chevalley 1956-1958: Classification des groupes de Lie algébriques. Exposé 13. 
  16. [16] J. Lipman: Unique factorization in complete local rings. AMS Proc. Symp. Pure Math.29 (1975) 531-546. Zbl0306.13005MR374125
  17. [17] M. Murthy: A note on factorial rings. Arch. Math.15 (1964) 418-420. Zbl0123.03401MR173695
  18. [18] R. Remmert and T. Van De Ven: Über holomorphe Abbildungen projektiv-algebraischer Mannigfaltigkeiten auf komplexe Räume. Math. Ann.142 (1961) 453-486. Zbl0099.16403MR145556
  19. [19] R. Remmert and A. Van De Ven: Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology2 (1963) 137-157. Zbl0122.08602MR148085
  20. [20] P. Samuel: Lectures on unique factorization domains. Tata Inst. Fund. Res., No. 30, Bombay (1964). Zbl0184.06601MR214579
  21. [21] F. Severi: Sulla varietà che rappresenta gli spazî subordinati di data dimensione, immersi in uno spazio lineare. Ann. di Mat. (3) 24 (1915) 89-120. Zbl45.0915.03JFM45.1379.05
  22. [22] M. Steinsiek: Über homogen-rationale Mannigfaltigkeiten. Schriftenr. Math. Inst. Univ. Münster, 2. Serie, Bd. 23 (1982). Zbl0491.32025MR673379
  23. [23] M. Steinsiek: Transformation groups on homogeneous-rational manifolds. Math. Ann.260 (1982) 423-435. Zbl0503.32017MR670191
  24. [24] J. Tits: Sur certaines classes d'espaces homogènes de groupes de Lie. Mém. Acad. Roy. Belg.29 (1955) 1-268. Zbl0067.12301MR76286
  25. [25] J. Tits: Espaces homogènes complexes compacts. Comment. Math. Helv.37 (1962/63) 111-120. Zbl0108.36302MR154299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.