Compactifications équivariantes par des courbes

François Lescure

Mémoires de la Société Mathématique de France (1987)

  • Volume: 26, page 1-91
  • ISSN: 0249-633X

How to cite

top

Lescure, François. "Compactifications équivariantes par des courbes." Mémoires de la Société Mathématique de France 26 (1987): 1-91. <http://eudml.org/doc/94866>.

@article{Lescure1987,
author = {Lescure, François},
journal = {Mémoires de la Société Mathématique de France},
keywords = {equivariant compactifications of a homogeneous space},
language = {fre},
pages = {1-91},
publisher = {Société mathématique de France},
title = {Compactifications équivariantes par des courbes},
url = {http://eudml.org/doc/94866},
volume = {26},
year = {1987},
}

TY - JOUR
AU - Lescure, François
TI - Compactifications équivariantes par des courbes
JO - Mémoires de la Société Mathématique de France
PY - 1987
PB - Société mathématique de France
VL - 26
SP - 1
EP - 91
LA - fre
KW - equivariant compactifications of a homogeneous space
UR - http://eudml.org/doc/94866
ER -

References

top
  1. [1] AHIEZER D.N. — Dense orbits with two ends. Math. USSR, Izvestija II, 293-307 (1977). Zbl0378.14009
  2. [2] AUSLANDER L. — On radicals of discrete subgroups of Lie groups. Amer. J. Math. 85, 145-150 (1963). Zbl0217.37002MR27 #2583
  3. [3] BARTH-W., OELJEKLAUS E. — Über die Albanese Abbildung einer fast homogenen Kähler-Mannigfaltigkeit. Math. Ann. 211, 47-62 (1974). Zbl0276.32022MR50 #7599
  4. [4] BARTH W. und OTTE M. — Über fast-uniforme Untergruppen Komplexer Liegruppen und auflösbare Komplexe Mannigfaltigkeiten. Comm. Math. Helv. 44, 269-281 (1969). Zbl0172.37804MR40 #6597
  5. [5] BARLET D. — Convexité au voisinage d'un cycle. Séminaire François NORGUET. Lecture Notes n° 807, Springer Verlag, 102-121 (1980). Zbl0434.32012MR82f:14007
  6. [6] BLANCHARD A. — Sur les variétés analytiques complexes. Ann. Sci. Ec. Norm. Sup. 73, 157-202 (1956). Zbl0073.37503MR19,316e
  7. [7] BOREL A. — Les bouts des espaces homogènes de groupes de Lie. Ann. of Math. 58, 443-457 (1953). Zbl0053.13002MR15,199c
  8. [8] BOTT R. — Homogeneous vector bundles. Ann. of Math. (2) 66, 203-248 (1957). Zbl0094.35701MR19,681d
  9. [9] BRIESKORN E. — Über holomorphe ℙn-bündel über ℙ1 Math. Ann. 157, 343-357 (1965). Zbl0128.17003MR37 #5897
  10. [10] FISCHER G. — Complex Analytic Geometry. Lecture Notes in Mathematics 538. Springer (1976). Zbl0343.32002MR55 #3291
  11. [11] FREEMAN M. — Local complex foliations of real submanifolds. Math. Ann. 209, 1-30 (1974). Zbl0267.32006MR49 #10911
  12. [12] FREUDENTHAL H. — Über die Enden topologischen Räume und Gruppen. Math. Z. 33, 692-713 (1931). Zbl0002.05603JFM57.0731.01
  13. [13] GILLIGAN B. and HUCKLEBERRY A. — Remarks on k-Leviflat complex manifolds. Can. J. Math. Vol. 31, 881-889 (1979). Zbl0373.32008MR81g:32015
  14. [14] GILLIGAN B. — Ends of complex homogeneous manifolds having non constant holomorphic functions. Arch. Math. 37, 544-555 (1981). Zbl0459.32013MR84h:32040
  15. [15] CRAUERT H.— Analystische Faserungen über holomorph vollständigen Räumen. Math. Ann. 135, 263-273 (1958). Zbl0081.07401
  16. [16] GRAUERT H.— Über Modifikationen und exceptionnelle analytische Mengen. Math. Ann. 146, 331-368 (1962). Zbl0178.42702MR25 #583
  17. [17] GRAUERT H. und REMMERT R. — Komplexe Räume. Math. Ann. 136, 245-318 (1962). Zbl0087.29003MR21 #2063
  18. [18] GRIFFITHS Ph. and HARRIS J. — Principles of algebraic Geometry. New-York, J. Wiley (1978). Zbl0408.14001
  19. [19] GUNNING R. and ROSSI H. — Analytic functions of several complex variables. Englewood Cliffs N.J., Prentice Hall (1965). Zbl0141.08601MR31 #4927
  20. [20] HIRZEBRUCH F. — Über eine Klasse von einfach-zusammenhängenden komplexer Mannigfaltigkeit. Math. Ann. 124, 77-86 (1951). Zbl0043.30302MR13,574e
  21. [21] HOLMANN H. — Seifertsche Faserräume. Math. Ann. 157, 138-166 (1964). Zbl0123.16501MR30 #587
  22. [22] HUCKLEBERRY A. and LIVORNI L. — A classification of complex homogeneous surfaces. Can. J. Math. 33, 1096-1109 (1981). Zbl0504.32025
  23. [23] HUCKLEBERRY A. and MARGULIS G.A. — Invariant analytic hypersurfaces. Inven. Math. 71, 235-240 (1983). Zbl0507.32024MR84i:32046
  24. [24] HUCKLEBERRY A. and OELJEKLAUS E. — A characterisation of complex homogeneous cônes "Kegelsatz". Math. Zeitschrift 170, 181-194 (1980). Zbl0412.32030MR81b:32017
  25. [25] HUCKLEBERRY A. and OELJEKLAUS E. — Sur les espaces analytiques complexes presque homogènes. Comptes-rendus Académie des Sciences Série A, 447-448 (1980). Zbl0444.32015MR81c:32057
  26. [26] HUCKLEBERRY A. and OELJEKLAUS E. — Classification theorems for almost homogeneous-Spaces. Désigné [HO] dans le texte. Annales de l'Institut Elie Cartan, volume 9, Nancy (1984). Zbl0549.32024MR86g:32050
  27. [27] HUCKLEBERRY A. and SNOW D. — Almost-homogeneous Kälher manifolds with hypersurface orbits. Osaka J. Math. 19, 763-786 (1982). Zbl0507.32023MR84i:32042
  28. [28] KAUP L. — Ein Künneth Formula für Frechet Garben. Math. Zeitschrift 97, 158-168 (1967). Zbl0191.53701MR35 #6868
  29. [29] KAUP W. — Infinitesimale transformations gruppen komplexer Räume. Math. Ann. 160, 72-92 (1965). Zbl0146.31102MR31 #5988
  30. [30] LESCURE F. — Elargissement du groupe d'automorphisme pour des variétés quasi-homogènes. Math. Ann. 261, 455-462 (1982). Zbl0531.32018MR85h:32051
  31. [31] LESCURE F. — Un résultat de type Borel-Weil. Application. Publication Institut Elie Cartan 6, Nancy (1982). Zbl0532.32017MR85h:32052
  32. [32] LESCURE F. — Démonstration d'une conjecture de Huckleberry-Oeljeklaus. C.R.A.S. 184-Série I, t. 297 (1983). Zbl0551.32022MR86c:32027
  33. [33] MORIMOTO A. — Non compact complex Lie Groups without non constant holomorphic functions. Proc. of the Conf. on Complex Analysis. Minnéapolis 256-272 (1964). Zbl0144.07902MR31 #5929
  34. [34] OELJEKLAUS E. — Ein Hebbarkeitssatz für Automorphismengruppen Kompakter Mannigfaltigkeiten. Math. Ann. 190, 154-166 (1970). Zbl0195.36902MR43 #5055
  35. [35] ORLIK P. and WAGREICH P. — Isolated singularities of algebraic surfaces with ℂ*-action. Ann. of Math. Vol 93, 203-228 (1971). Zbl0212.53702MR44 #1662
  36. [36] POTTERS J. — On almost compact complex surfaces. Inv. Math. 8, 244-266 (1969). Désigné [Po] dans le texte. Zbl0205.25102MR41 #3808
  37. [37] REMMERT R. und STEIN K. — Über die wesentlichen Singularitäten analytischerer Mengen. Math. Ann. 126, 263-306 (1953). Zbl0051.06303MR15,615e
  38. [38] ROTHSTEIN W. — Zur theorie des analytischen Mannigfaltigkeit im Raum von Komplexer Veränderlichen. Math. Ann. 129, 98-138 (1955). Zbl0064.08001MR17,84a
  39. [39] SNOW J. — Complex solv-manifolds of dimension two and three. Thesis, Notre Dame University (1979). 
  40. [40] STEINBERG R. — Conjugacy classes in algebraic groups. Lecture Notes in Mathematics n° 366, Springer Verlag (1974). Zbl0281.20037MR50 #4766
  41. [41] STEINSIEK M. — Homogeneous-rational manifolds and unique factorization. Compositio Mathematica 52, 221-229 (1984). Zbl0559.14035MR85j:14096
  42. [42] TITS J. — Espaces homogènes complexes compacts. Comm. Math. Helv. 37, 111-120 (1962). Zbl0108.36302MR27 #4248
  43. [43] TITS J. — Free subgroups in linear groups. J. Algebra 20, 250-270 (1974). Zbl0236.20032MR44 #4105
  44. [44] UENO K. — Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Mathematics 439, Berlin-Heidelberg New-York Springer Verlag (1975). Zbl0299.14007MR58 #22062
  45. [45] VAN DE VEN T. — Analytic compactifications of complex homology cells. Math. Ann. 147, 189-204 (1962). Zbl0105.14406MR25 #3548

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.