Seminormality of certain generic projections

Rahim Zaare-Nahandi

Compositio Mathematica (1984)

  • Volume: 52, Issue: 2, page 245-274
  • ISSN: 0010-437X

How to cite

top

Zaare-Nahandi, Rahim. "Seminormality of certain generic projections." Compositio Mathematica 52.2 (1984): 245-274. <http://eudml.org/doc/89664>.

@article{Zaare1984,
author = {Zaare-Nahandi, Rahim},
journal = {Compositio Mathematica},
keywords = {seminormality of generic projection; conductor; depth},
language = {eng},
number = {2},
pages = {245-274},
publisher = {Martinus Nijhoff Publishers},
title = {Seminormality of certain generic projections},
url = {http://eudml.org/doc/89664},
volume = {52},
year = {1984},
}

TY - JOUR
AU - Zaare-Nahandi, Rahim
TI - Seminormality of certain generic projections
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 52
IS - 2
SP - 245
EP - 274
LA - eng
KW - seminormality of generic projection; conductor; depth
UR - http://eudml.org/doc/89664
ER -

References

top
  1. [1] A. Andreotti and P. Holm: Quasi analytic and parametric spaces, Real and Complex Singularities, Oslo (1976); Sijthoff and Noordhoff, The Netherlands (1977) 13-97. Zbl0376.32025MR589903
  2. [2] M. Artin and M. Nagata: Residual intersections in Cohen-Macaulay rings, J. Math. Kyoto Univ.12-2 (1972) 307-323. Zbl0263.14019MR301006
  3. [3] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601MR242802
  4. [4] E. Bombieri: Sulla seminormalità e Singularità ordinarie, Symposia MathematicaXI, Academic Press (1973) 205-210. Zbl0294.14015MR429874
  5. [5] N. Bouraki: Algèbre Commutative, Ch. IV and V, Hermann, Paris, (1961 and 1964). 
  6. [6] P. Freyd: Abelian Categories, Harper & Row, New York (1964). Zbl0121.02103MR166240
  7. [7] S. Greco and C. Traverso: On seminormal schemes, Comp. Math.40 (1980) 325-365. Zbl0412.14024MR571055
  8. [8] R. Hartshorne: Algebraic Geometry, Springer GMT 52, New York (1977). Zbl0367.14001MR463157
  9. [9] R. Hartshorne: Complete intersection and connectedness, Am. J. Math.84 (1962) 497-508. Zbl0108.16602MR142547
  10. [10] M. Hochster and J.A. Eagon: Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Am. J. Math.93 (1971) 1020-1058. Zbl0244.13012MR302643
  11. [11] I. Kaplansky: Commutative Rings, Boston: Allyn and Bacon (1970). Zbl0203.34601MR254021
  12. [12] J.V. Leahy and M.A. Vitulli: Seminormal rings and weakly normal varieties, Nagoya Math. J.82 (1981) 27-56. Zbl0528.14001MR618807
  13. [13] H. Matsumura: Commutative Algebra, Massachusetts; Benjamin/Cummings (1980). Zbl0441.13001MR575344
  14. [14] T.T. Moh: On the unboundedness of generators of prime ideals in power series rings of three variables, J. Math. Soc. Japan26 (1974) 722-734. Zbl0307.13015MR354680
  15. [15] M. Nagata: Local Rings, New York: Interscience (1962). Zbl0123.03402MR155856
  16. [16] D.G. Northcott: The number of analytic branches of a variety, J. Lond. Math. Soc.25 (1950) 275-279. Zbl0039.37401MR40724
  17. [17] F. Orecchia: Sulla seminormalità di certe varietà affini ridicibili, Boll. Un. Mat. Ital. 13-B (1976) 558-600. Zbl0346.13001MR463163
  18. [18] J. Roberts: Generic projections of algebraic geometry, Am. J. Math.93 (1971) 191-214. Zbl0212.53801MR277530
  19. [19] J. Roberts: Hypersurfaces with nonsingular normalization and their double loci, J. Algebra53 (1978) 253-267. Zbl0402.14020MR491676
  20. [20] J. Roberts: Ordinary singularities of projective varieties, Thesis, Harvard University, May (1969). 
  21. [21] J. Roberts: Singularity subschemes and generic projections, Trans. Am. Math. Soc.212 (1975) 229-268. Zbl0314.14003MR422274
  22. [22] J. Roberts: Some properties of double point schemes, Compt. Math.41 (1980) 61-94. Zbl0462.14021MR578051
  23. [23] J.P. Serre: Algèbre Locale. Multiplicités, Springer Lecture Notes in Math. 11 (1965). Zbl0142.28603MR201468
  24. [24] C. Traverso: Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa24 (1970) 585-595. Zbl0205.50501MR277542
  25. [25] M.A. Vitulli: On grade and formal connectivity for weakly normal varieties (preprint of University of Oregon). Zbl0515.14018MR696124
  26. [26] O. Zariski: An Introduction to the Theory of Algebraic Surfaces, Springer Lecture Notes in Math. 83 (1969). Zbl0177.49001MR263819
  27. [27] O. Zariski and P. Samuel: Commutative Algebra, Vol. I and II, New York: Van Nostrand (1958). Zbl0121.27801MR90581
  28. [28] W. Adkins, A. Andreotti and J. Leahy: Weakly normal complex spaces, Accad. Naz. Lincei Contributi del Cen. Interdisciplinare di Scienze Mat.55, (1981) 2-56. Zbl0612.32010MR695003
  29. [29] W. Adkins: Weak normality and Lipschitz saturation for ordinary singularities (preprint of Louisiana State University). Zbl0591.14009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.