The rank of étale cohomology of varieties over p -adic or number fields

C. Soulé

Compositio Mathematica (1984)

  • Volume: 53, Issue: 1, page 113-131
  • ISSN: 0010-437X

How to cite

top

Soulé, C.. "The rank of étale cohomology of varieties over $p$-adic or number fields." Compositio Mathematica 53.1 (1984): 113-131. <http://eudml.org/doc/89674>.

@article{Soulé1984,
author = {Soulé, C.},
journal = {Compositio Mathematica},
keywords = {arithmetic variety; Galois descent; étale cohomology groups; algebraic K-theory},
language = {eng},
number = {1},
pages = {113-131},
publisher = {Martinus Nijhoff Publishers},
title = {The rank of étale cohomology of varieties over $p$-adic or number fields},
url = {http://eudml.org/doc/89674},
volume = {53},
year = {1984},
}

TY - JOUR
AU - Soulé, C.
TI - The rank of étale cohomology of varieties over $p$-adic or number fields
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 53
IS - 1
SP - 113
EP - 131
LA - eng
KW - arithmetic variety; Galois descent; étale cohomology groups; algebraic K-theory
UR - http://eudml.org/doc/89674
ER -

References

top
  1. [1] A. Beilinson: Higher regulators and values of L-functions of curves. Funk. Analysis14 (2) (1980) 116-117. Zbl0475.14015MR575206
  2. [2] S. Bloch and K. Kato: P-adic étale cohomology, preprint. MR849653
  3. [3] W. Browder: Algebraic K-theory with coefficients Z/p, in Springer Lec. Notes in Maths.657 (1978), 40-84. Zbl0386.18011MR513541
  4. [4] P. Deligne: La conjecture de Weil II. Publ. math. IHES52 (1980) 137-252. Zbl0456.14014MR601520
  5. [5] P. Deligne et al.: SGA IV 1 2, Cohomologie étale, exp. 1. Springer Lecture Notes in Maths.568 (1977). MR463174
  6. [6] B. Ferrero and L. Washington: The Iwasawa μp invariant vanishes for abelian number fields. Ann. Math.109 (1979) 377-395. Zbl0443.12001
  7. [7] K. Iwasawa: On Zl-extensions of algebraic number fields. Ann. Math.98 (1973) 246-326. Zbl0285.12008MR349627
  8. [8] K. Iwasawa: Riemann-Hurwitz formula and p-adic Galois representations for number fields. Tohoku Math. Journal33 (1981) 263-288. Zbl0468.12004MR624610
  9. [9] M. Karoubi: Connexions, courbures et classes caractéristiques en K-théorie algébrique. in Current Trends in Algebraic Topology, CMS Conference Proceedings, Vol. 2, Part 1 (1982) 19-29. Zbl0553.18006MR686108
  10. [10] M. Katz and W. Messing: Some consequences of the Riemann hypothesis for varieties for finite fields. Invent. Math.23 (1974) 73-77. Zbl0275.14011MR332791
  11. [11] C. Kratzer: λ-structure en K-théorie algébrique. Comm. Math. Helvetici55 (1980) 233-254. Zbl0444.18008
  12. [12] S. Lichtenbaum: On the values of zeta and L-functions I. Ann. Math.96 (1972) 338-360. Zbl0251.12002MR360527
  13. [13] D. Quillen: Higher Algebraic K-theory. Proceedings of the International Congress of Mathematicians, Vancouver, 1974. Zbl0359.18014MR422392
  14. [14] P. Schneider; Über gewisse Galois Cohomologie Gruppen. Math. Zeitschrift168 (1979) 181-205. Zbl0421.12024MR544704
  15. [15] J.-P. Serre: Cohomologie galoisienne. Springer Lecture Notes in Maths.5 (1964). Zbl0812.12002
  16. [16] C. Soulé: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. Inv. Math.55 (1979) 251-295. Zbl0437.12008MR553999
  17. [17] C. Soulé: On higher p-adic regulators, in Springer Lectures Notes in Maths.854 (1980) 372-401. Zbl0488.12008MR618313
  18. [18] C. Soulé: On K-theory and values of zeta functions, in Current Trends in Algebraic Topology, CMS Conference Proceedings, Vol. 2, Part 1 (1982) 49-&gt;&gt;59. Zbl0558.12004MR686112
  19. [19] J. Tate: p-divisible groups, in Proceedings of a Conf. on local fields (1967) Springer. Zbl0157.27601MR231827
  20. [20] J. Tate: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog., Sem. Bourbaki (1965-1966), exposé 306, in Dix exposés sur la cohomologie des schémas (1968), North-Holland and Masson. Zbl0199.55604
  21. [21] J. Tate: Duality theorems in Galois cohomology over number fields. Proc. Cong. Stockholm (1962) 288-295. Zbl0126.07002MR175892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.