The -rank of the real class group of cyclotomic fields

Gary Cornell; Michael I. Rosen

Compositio Mathematica (1984)

  • Volume: 53, Issue: 2, page 133-141
  • ISSN: 0010-437X

How to cite

top

Cornell, Gary, and Rosen, Michael I.. "The $\ell $-rank of the real class group of cyclotomic fields." Compositio Mathematica 53.2 (1984): 133-141. <http://eudml.org/doc/89679>.

@article{Cornell1984,
author = {Cornell, Gary, Rosen, Michael I.},
journal = {Compositio Mathematica},
keywords = {class number; maximal real subfield; cyclotomic field; cohomological approach; lower bounds for the -rank of the class group},
language = {eng},
number = {2},
pages = {133-141},
publisher = {Martinus Nijhoff Publishers},
title = {The $\ell $-rank of the real class group of cyclotomic fields},
url = {http://eudml.org/doc/89679},
volume = {53},
year = {1984},
}

TY - JOUR
AU - Cornell, Gary
AU - Rosen, Michael I.
TI - The $\ell $-rank of the real class group of cyclotomic fields
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 53
IS - 2
SP - 133
EP - 141
LA - eng
KW - class number; maximal real subfield; cyclotomic field; cohomological approach; lower bounds for the -rank of the class group
UR - http://eudml.org/doc/89679
ER -

References

top
  1. [1] G. Cornell: Exponential growth of the l-rank of the class group of the maximal real subfield of cyclotomic fields (to appear). Zbl0519.12004MR682821
  2. [2] A. Fröhlich: On the absolute class group of abelian fields, J. of the London Math. Soc.29 (1954) 211-217. Zbl0055.03302MR66422
  3. [3] A. Fröhlich: On the absolute class group of abelian fields II, J. of the London Math. Soc.30 (1955) 72-80. Zbl0064.27305MR66424
  4. [4] Y. Furuta: On class field towers and the rank of ideal class groups, Nagoya Math. J.48 (1972) 147-157. Zbl0256.12009MR325574
  5. [5] D. Garbanati: Ivariants of the ideal class group and the Hasse norm theorem, J. Reine and Angew. Math.297 (1978) 159-171. Zbl0364.12008MR466072
  6. [6] F. Gerth: The Hasse Norm theorem for abelian extensions of number fields, Bulletin Amer. Math. Soc.83 (1977) 264-266. Zbl0348.12015MR422200
  7. [7] B. Huppert: Endliche Gruppen I. BerlinHeidelberg, New York: Springer-Verlag (1979). Zbl0412.20002MR224703
  8. [8] D. Kubert: The 2-divisibility of the class number of cyclotomic fields and the Stickelberger ideal (to appear). Zbl0584.12003MR850634
  9. [9] S. Lang: Units and class groups in number theory and algebraic geometry, Bullentin Amer. Math. Soc.6 (1982) 253-316. Zbl0482.12002MR648522
  10. [10] H.W. Leopoldt: Zur Geschlechtertheorie in abelschen Zahlkörpern, Math. Nach.9 (1953) 350-362. Zbl0053.35502MR56032
  11. [11] M. Razar: Central and genus class fields and the Hasse norm theorem, Comp. Math.35 (1977) 281-298. Zbl0376.12006MR466073
  12. [12] K. Yamazaki: On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo10 (1964) 147-195. Zbl0125.01601MR180608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.