Picard groups of Zariski surfaces
Compositio Mathematica (1985)
- Volume: 54, Issue: 1, page 3-36
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] P. Blass: Some geometric applications of a differential equation in characteristic p > 0 to the theory of algebraic surfaces, to appear in AMS, Contemporary Mathematics, volume containing the Proceedings of the conference in Honor of N. Jacobson. Zbl0561.14018
- [2] P. Deligne and N. Katz: SGA 7, Part II, Lecture Notes in Mathematics340Springer Verlag, Berlin (1973). Zbl0258.00005MR354657
- [3] A. Grothendieck: SGA I, Lecture Notes in Mathematics224, Springer VerlagBerlin1971. Zbl0234.14002
- [4] R. Hartshorne: Equivalence relations on algebraic cycles and subvarieties of small codimension. Proceedings of Symposia in Pure Mathematics, AMS, XXIX (Arcata), published 1975 (corollary 3.5). Zbl0314.14001MR369359
- [5] R. Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics, Springer, Verlag, Berlin1977. Zbl0367.14001MR463157
- [6] J. Lang: Ph.D. Thesis, Purdue University, 1981.
- [7] W.E. Lang, Remarks on p-torsion of algebraic surfaces, Comp. Math.52(2) (1984) 197-202. Zbl0583.14012MR750355
- [8] A.N. Rudakov and I.R. Šafarevič:Supersingular K3 surfaces over fields of characteristic two, Math. USSR-Izv13 (1979) 147-165. Zbl0424.14008
- [9] P. Samuel: Lectures on UFD'sTata Lecture Notes, Bombay1964.
- [10] J. Steenbrink: On the Picard group of certain smooth surfaces in weighted projective spaces. In: Algebraic Geometry, Proceedings La Rábida 1981. Lecture Notes in Mathematics961, Springer Verlag, Berlin etc. 1982, pp. 302-313. Zbl0507.14025MR708341