The factoriality of Zariski rings
Compositio Mathematica (1987)
- Volume: 63, Issue: 3, page 273-290
- ISSN: 0010-437X
Access Full Article
topHow to cite
topLang, Jeffrey. "The factoriality of Zariski rings." Compositio Mathematica 63.3 (1987): 273-290. <http://eudml.org/doc/89864>.
@article{Lang1987,
author = {Lang, Jeffrey},
journal = {Compositio Mathematica},
keywords = {Zariski ring; factorial ring},
language = {eng},
number = {3},
pages = {273-290},
publisher = {Martinus Nijhoff Publishers},
title = {The factoriality of Zariski rings},
url = {http://eudml.org/doc/89864},
volume = {63},
year = {1987},
}
TY - JOUR
AU - Lang, Jeffrey
TI - The factoriality of Zariski rings
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 3
SP - 273
EP - 290
LA - eng
KW - Zariski ring; factorial ring
UR - http://eudml.org/doc/89864
ER -
References
top- 1 P. Blass: Zariski Surfaces. Dissertations Mathematicae200 (1980). Zbl0523.14027MR564489
- 2 P. Blass: Some geometric applications of a dinerential equation in characteristic p > 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S.13 (1982). Zbl0561.14018
- 3 P. Blass: Picard groups of Zariski Surfaces I. Comp. Math.54 (1985) 3-86. Zbl0624.14021MR782383
- 4 P. Blass and J. Lang: Picard groups of Zariski Surfaces II. Comp. Math.54 (1985) 36-39. Zbl0624.14021
- 5 R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). Zbl0256.13001MR382254
- 6 H.W. Gould: Combinatorial Identities. Morgantown, W. Va (1972). Zbl0241.05011MR354401
- 7 R. Hartshorne: Algebraic Geometry. Springer-Verlag, New York (1977). Zbl0367.14001MR463157
- 8 I. Kaplansky: Commutative Rings. Allyn and Bacon, Boston (1970). Zbl0203.34601MR254021
- 9 J. Lang: An example related to the affine theorem of Castelnuovo. Michigan Math. J.28 (1981). Zbl0495.14021MR629369
- 10 J. Lang: The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p > 0. Trans A.M.S.2782 (1983). Zbl0528.14018MR701514
- 11 J. Lang: The divisor class group of the surface zpn = G(x, y) over fields of characteristic p > 0. J. Alg.84, 2 (1983). Zbl0528.14017MR723398
- 12 J. Lang: The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg.100, (1986).
- 13 J. Lang: Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. Zbl0643.14023
- 14 M. Nagata: Local Rings. John Wiley & Sons, Inc. (1962). Zbl0123.03402MR155856
- 15 M. Nagata: Field Theory. Marcel Dekker, Inc. (1977). Zbl0366.12001MR469887
- 16 Stohr and Voloch: A formula for the Cartier operator on plane algebraic curves. Submitted for publication.
- 17 P. Samuel: Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). Zbl0184.06601MR214579
- 18 R. Walker: Algebraic Curves. Princeton University Press, Princeton, (1950). Zbl0039.37701MR33083
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.