The factoriality of Zariski rings

Jeffrey Lang

Compositio Mathematica (1987)

  • Volume: 63, Issue: 3, page 273-290
  • ISSN: 0010-437X

How to cite

top

Lang, Jeffrey. "The factoriality of Zariski rings." Compositio Mathematica 63.3 (1987): 273-290. <http://eudml.org/doc/89864>.

@article{Lang1987,
author = {Lang, Jeffrey},
journal = {Compositio Mathematica},
keywords = {Zariski ring; factorial ring},
language = {eng},
number = {3},
pages = {273-290},
publisher = {Martinus Nijhoff Publishers},
title = {The factoriality of Zariski rings},
url = {http://eudml.org/doc/89864},
volume = {63},
year = {1987},
}

TY - JOUR
AU - Lang, Jeffrey
TI - The factoriality of Zariski rings
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 3
SP - 273
EP - 290
LA - eng
KW - Zariski ring; factorial ring
UR - http://eudml.org/doc/89864
ER -

References

top
  1. 1 P. Blass: Zariski Surfaces. Dissertations Mathematicae200 (1980). Zbl0523.14027MR564489
  2. 2 P. Blass: Some geometric applications of a dinerential equation in characteristic p &gt; 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S.13 (1982). Zbl0561.14018
  3. 3 P. Blass: Picard groups of Zariski Surfaces I. Comp. Math.54 (1985) 3-86. Zbl0624.14021MR782383
  4. 4 P. Blass and J. Lang: Picard groups of Zariski Surfaces II. Comp. Math.54 (1985) 36-39. Zbl0624.14021
  5. 5 R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). Zbl0256.13001MR382254
  6. 6 H.W. Gould: Combinatorial Identities. Morgantown, W. Va (1972). Zbl0241.05011MR354401
  7. 7 R. Hartshorne: Algebraic Geometry. Springer-Verlag, New York (1977). Zbl0367.14001MR463157
  8. 8 I. Kaplansky: Commutative Rings. Allyn and Bacon, Boston (1970). Zbl0203.34601MR254021
  9. 9 J. Lang: An example related to the affine theorem of Castelnuovo. Michigan Math. J.28 (1981). Zbl0495.14021MR629369
  10. 10 J. Lang: The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p &gt; 0. Trans A.M.S.2782 (1983). Zbl0528.14018MR701514
  11. 11 J. Lang: The divisor class group of the surface zpn = G(x, y) over fields of characteristic p &gt; 0. J. Alg.84, 2 (1983). Zbl0528.14017MR723398
  12. 12 J. Lang: The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg.100, (1986). 
  13. 13 J. Lang: Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. Zbl0643.14023
  14. 14 M. Nagata: Local Rings. John Wiley & Sons, Inc. (1962). Zbl0123.03402MR155856
  15. 15 M. Nagata: Field Theory. Marcel Dekker, Inc. (1977). Zbl0366.12001MR469887
  16. 16 Stohr and Voloch: A formula for the Cartier operator on plane algebraic curves. Submitted for publication. 
  17. 17 P. Samuel: Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). Zbl0184.06601MR214579
  18. 18 R. Walker: Algebraic Curves. Princeton University Press, Princeton, (1950). Zbl0039.37701MR33083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.