Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism

R. Benedetti; M. Dedò

Compositio Mathematica (1984)

  • Volume: 53, Issue: 2, page 143-151
  • ISSN: 0010-437X

How to cite

top

Benedetti, R., and Dedò, M.. "Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism." Compositio Mathematica 53.2 (1984): 143-151. <http://eudml.org/doc/89681>.

@article{Benedetti1984,
author = {Benedetti, R., Dedò, M.},
journal = {Compositio Mathematica},
keywords = {fundamental classes; topology of real algebraic sets},
language = {eng},
number = {2},
pages = {143-151},
publisher = {Martinus Nijhoff Publishers},
title = {Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism},
url = {http://eudml.org/doc/89681},
volume = {53},
year = {1984},
}

TY - JOUR
AU - Benedetti, R.
AU - Dedò, M.
TI - Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism
JO - Compositio Mathematica
PY - 1984
PB - Martinus Nijhoff Publishers
VL - 53
IS - 2
SP - 143
EP - 151
LA - eng
KW - fundamental classes; topology of real algebraic sets
UR - http://eudml.org/doc/89681
ER -

References

top
  1. [AK1] S. Akbulut and H. King: Real algebraic structures on topological spaces. Publ. Math. no 53, IHES (1981). Zbl0531.57019MR623536
  2. [AK2] S. Akbulut and H. King: The topology of real algebraic sets. Lecture given at Arcata (1981). Zbl0537.14018
  3. [BD] R. Benedetti and M Dedò:A cycle is the fundamental class of an Euler space. Proc. Amer. Math. Soc.87 (1983) 169-174. Zbl0557.57009MR677255
  4. [BH] A. Borel and A. Haefliger: La classe d'homologie fondamentale d'un espace analytique. Bull. Soc. Math. France89 (1961) 461-513. Zbl0102.38502MR149503
  5. [BS] A. Borel and J.P. Serre: Le théorème de Riemann-Roch. Bull. Soc. Math. France86 (1958) 97-136. Zbl0091.33004MR116022
  6. [BT] R. Benedetti and A. Tognoli: Remarks and counterexamples in the theory of real algebraic vector bundles and cycles., Springer Lecture Notes n° 959 (1982) 198-211. Zbl0498.14015MR683134
  7. [BrT] L. Beretta and A. Tognoli: Some basic facts in algebraic geometry on a non-algebraically closed field. Ann. S.N.S. Pisa, Vol. III(IV) (1976) 341-359. Zbl0353.14001MR429902
  8. [G] A. Grothendieck: La théorie des classes de Chern. Bull. Soc. Math. France86 (1958) 137-154. Zbl0091.33201MR116023
  9. [H] H. Hironaka: Smoothing of algebraic cycles of low dimensions. Amer. J. Math.90 (1968) 1-54. Zbl0173.22801MR224611
  10. [R] J. Roberts: Chow's moving lemma. Alg. Geom. Oslo1970, Wolters-Noordhoff (1972), pp. 89-96. MR382269
  11. [S] J.P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-McLane. Comm. Math. Helv.27 (1953) 198-231. Zbl0052.19501MR60234
  12. [T1] A. Tognoli: Su una congettura di Nash. Ann. S.N.S. Pisa27 (1973) 167-185. Zbl0263.57011MR396571
  13. [T2] A. Tognoli: Algebraic approximation of manifolds and spaces. Sém. Bourbaki 32ème année (1979) n°548. Zbl0456.57012
  14. [T3] A. Tognoli: Algebraic geometry and Nash functions. Institutiones Math. Vol. III, Academic Press (1978). Zbl0418.14002MR556239
  15. [Tm] R. Thom: Quelques propriétés globales des variétés différentiables. Comm. Math. Helv.28 (1954) 17-86. Zbl0057.15502MR61823

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.