A common abstraction of boolean rings and lattice ordered groups

Klaus D. Schmidt

Compositio Mathematica (1985)

  • Volume: 54, Issue: 1, page 51-62
  • ISSN: 0010-437X

How to cite

top

Schmidt, Klaus D.. "A common abstraction of boolean rings and lattice ordered groups." Compositio Mathematica 54.1 (1985): 51-62. <http://eudml.org/doc/89697>.

@article{Schmidt1985,
author = {Schmidt, Klaus D.},
journal = {Compositio Mathematica},
keywords = {lattice ordered partial semigroups; Boolean rings; lattice ordered groups},
language = {eng},
number = {1},
pages = {51-62},
publisher = {Martinus Nijhoff Publishers},
title = {A common abstraction of boolean rings and lattice ordered groups},
url = {http://eudml.org/doc/89697},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Schmidt, Klaus D.
TI - A common abstraction of boolean rings and lattice ordered groups
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 1
SP - 51
EP - 62
LA - eng
KW - lattice ordered partial semigroups; Boolean rings; lattice ordered groups
UR - http://eudml.org/doc/89697
ER -

References

top
  1. [1] G. Birkhoff: Lattice Theory (3rd edn.). Providence, Rhode Island: Amer. Math. Soc. (1967). Zbl0153.02501MR227053
  2. [2] H. Dinges: Zur Algebra der Masstheorie. Bull. Greek Math. Soc.19 (1978) 25-97. Zbl0437.28005MR528506
  3. [3] V.V. Rama Rao: On a common abstraction of Boolean rings and lattice ordered groups I. Monatshefte Math.73 (1969) 411-421. Zbl0186.02303MR266835
  4. [4] K.D. Schmidt: A general Jordan decomposition. Arch. Math.38 (1982) 556-564. Zbl0464.46007MR668060
  5. [5] K.L.N. Swamy: Dually residuated lattice ordered semigroups. Math. Ann.159 (1965) 105-114. Zbl0135.04203MR183797
  6. [6] O. Wyler: Clans. Comp. Math.17 (1966) 172-189. Zbl0146.02004MR197368

NotesEmbed ?

top

You must be logged in to post comments.