Wild ramification of moduli spaces for curves or for abelian varieties

Tsutomu Sekiguchi

Compositio Mathematica (1985)

  • Volume: 54, Issue: 3, page 331-372
  • ISSN: 0010-437X

How to cite

top

Sekiguchi, Tsutomu. "Wild ramification of moduli spaces for curves or for abelian varieties." Compositio Mathematica 54.3 (1985): 331-372. <http://eudml.org/doc/89705>.

@article{Sekiguchi1985,
author = {Sekiguchi, Tsutomu},
journal = {Compositio Mathematica},
keywords = {positive characteristic; coarse moduli space; field of moduli for a principally polarized abelian variety; smooth curve},
language = {eng},
number = {3},
pages = {331-372},
publisher = {Martinus Nijhoff Publishers},
title = {Wild ramification of moduli spaces for curves or for abelian varieties},
url = {http://eudml.org/doc/89705},
volume = {54},
year = {1985},
}

TY - JOUR
AU - Sekiguchi, Tsutomu
TI - Wild ramification of moduli spaces for curves or for abelian varieties
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 54
IS - 3
SP - 331
EP - 372
LA - eng
KW - positive characteristic; coarse moduli space; field of moduli for a principally polarized abelian variety; smooth curve
UR - http://eudml.org/doc/89705
ER -

References

top
  1. [1] W. Baily: On the theory of θ-functions, the moduli of abelian varieties, and the moduli of curves. Annals of Math.75 (1962) 342-381. Zbl0147.39702
  2. [2] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras. New York: Interscience Publishers (1962). Zbl0131.25601MR144979
  3. [3] N. Bourbaki: Algèbre commutative. Eléments de Math.27, 28, 30, 31. Hermann: Paris (1961-1965). 
  4. [4] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus. Publ. Math. IHES36 (1969) 75-110. Zbl0181.48803MR262240
  5. [5] A. Grothendieck: Fondéments de la géométrie algébrique. Séminaire Bourbaki 1957-1962.Secrétariat Math.paris (1962). Refered to as FGA. Zbl0239.14002MR146040
  6. [6] A. Grothendieck and J. Dieudonné: Eléments de géométrie algébrique. Publ. Math. IHES4, 8, 11, 17, 20, 24, 28, 32, 1960-1972. Refered to as EGA. Zbl0203.23301
  7. [7] A. Grothendieck et al.: Séminaire de géométrie algébrique 1. Lecture Notes in Math. Vol. 224. Berlin-Heidelberg-New York: Springer (1971). Refered to as SGA 1. Zbl0234.14002
  8. [8] H. Hasse: Theorie der relativ-zyklischen algebraischen Funktionen-Körper, insbesondere bei endlichen Konstanten-Körper. Journ. reine angew. Math. (Crelle) 172 (1935) 37-54. Zbl0010.00501JFM60.0097.01
  9. [9] S. Koizumi: The fields of moduli for polarized abelian varieties and for curves. Nagoya Math. J.48 (1972) 37-55. Zbl0246.14006MR352095
  10. [10] O.A. Laudal and K. Lønsted: Deformations of curves I, moduli for hyperelliptic curves. In: Algebraic Geometry. Proceedings Tromso, Norway 1977. Lecture Notes in Math. Vol. 687, pp. 150-167. Berlin- Heidelberg-New York: Springer (1978). Zbl0422.14014MR527233
  11. [11] K. Lønsted: The hyperelliptic locus with special reference to characteristic two. Math. Ann.222 (1976) 55-61. Zbl0314.14009MR407030
  12. [12] K. Lønsted and S.L. Kleiman: Basics on families of hyperelliptic curves. Comp. Math.38 (1979) 83-111. Zbl0406.14017MR523266
  13. [13] H. Matsumura: Commutative Algebra. New York: W.A. Benjamin (1970). Zbl0211.06501MR266911
  14. [14] T. Matsusaka: Polarized varieties, fields of moduli, and generalized Kummer varieties of polarized abelian varieties. Amer. J. Math.80 (1958) 45-82. Zbl0085.15304MR94360
  15. [15] T. Matsusaka: On a theorem of Torelli. Amer. J. Math.80 (1958) 784-800. Zbl0100.35602MR97398
  16. [16] W. Messing: The crystals associated to Barsotti-Tate groups; with applications to abelian schemes. Lecture Notes in Math. Vol. 264. Berlin-Heidelberg -New York: Springer (1972). Zbl0243.14013MR347836
  17. [17] D. Mumford: Geometric Invariant Theory. Ergebnisse. Berlin- Heidelberg-New York: Springer (1965). Zbl0147.39304MR214602
  18. [18] D. MumfordAbelian varieties. Tata Inst. Studies in Math. Oxford University Press (1970). Zbl0223.14022MR282985
  19. [19] M. Nagata: Local rings. Interscience Tracts in Pure & Applied Math. 13. New York: J. Wiley (1962). Zbl0123.03402MR155856
  20. [20] F. Oort: Finite group schemes, local moduli for abelian varieties and lifting problems. In: Algebraic Geometry, Oslo (1970) pp. 223-254. Wolters-Noordhoff (1972). Also: Comp. Math.23 (1972) 265-296. Zbl0223.14024MR301026
  21. [21] F. Oort: Singularities of coarse moduli schemes. Sém. Dubreil29 (1975/1976). Lecture Notes in Math. Vol. 586, pp. 61-76. Berlin -Heidelberg-New York: Springer (1977). Zbl0349.14003MR518011
  22. [22] F. Oort and J. Steenbrink: The local Torelli problem for algebraic curves. J. de Geometrie Algebrique Angers (1979) A. Beauville editor, Sijthoff & Noordhoff (1980) pp. 157-203. Zbl0444.14007MR605341
  23. [23] F. Oort and K. Ueno: Principally polarized abelian varieties of dimension two or three are jacobian varieties. J. Fac. Sci. Univ. Tokyo, Section IA, Math. 20 (1973) 377-381. Zbl0272.14008MR364265
  24. [24] B.R. Peskin: Quotient-singularities in characteristic p. Thesis, M.I.T. (1980). 
  25. [25] H. Popp: The singularities of the moduli scheme of curves. J. Number Theory1 (1969) 90-107. Zbl0175.18503MR237492
  26. [26] T. Sekiguchi: On the fields of rationality for curves and for abelian varieties. Bull. Facult. Sci. & Eng. Chuo Univ.23 (1980) 35-41. Zbl0473.14013MR626110
  27. [27] T. Sekiguchi: The coincidence of fields of moduli for nonhyperelliptic curves and for their jacobian varieties. Nagoya Math. J.82 (1981) 57-82. Zbl0423.14017MR618808
  28. [28] T. Sekiguchi: On the fields of rationality for curves and for their jacobian varieties. Nagoya Math. J.88 (1982) 197-212. Zbl0473.14012MR683250
  29. [29] G. Shimura: On the field of rationality for an abelian variety. Nagoya Math. J.45 (1972) 167-178. Zbl0243.14012MR306215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.