A character approach to Looijenga's invariant theory for generalized root systems
Compositio Mathematica (1985)
- Volume: 55, Issue: 1, page 3-32
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSlodowy, Peter. "A character approach to Looijenga's invariant theory for generalized root systems." Compositio Mathematica 55.1 (1985): 3-32. <http://eudml.org/doc/89709>.
@article{Slodowy1985,
author = {Slodowy, Peter},
journal = {Compositio Mathematica},
keywords = {semiuniversal deformation of singularity; Kac-Moody algebra; Tits system; Weyl group; irreducible representations; characters; connected components},
language = {eng},
number = {1},
pages = {3-32},
publisher = {Martinus Nijhoff Publishers},
title = {A character approach to Looijenga's invariant theory for generalized root systems},
url = {http://eudml.org/doc/89709},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Slodowy, Peter
TI - A character approach to Looijenga's invariant theory for generalized root systems
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 1
SP - 3
EP - 32
LA - eng
KW - semiuniversal deformation of singularity; Kac-Moody algebra; Tits system; Weyl group; irreducible representations; characters; connected components
UR - http://eudml.org/doc/89709
ER -
References
top- [1] N. Bourbaki: Groupes et algèbres de Lie, IV, V, VI, Hermann, Paris (1968). Zbl0186.33001MR240238
- [2] E. Brieskorn: Singular elements of semisimple algebraic groups, Actes Congrès Intern, Math. (1970) t. 2, 279-284. Zbl0223.22012MR437798
- [3] I. Frenkel and V. Kac: Basic representations of affine Lie algebras and dual resonance models, Inventiones Math.62 (1980) 23-66. Zbl0493.17010MR595581
- [4] O. Gabber and V. Kac: On defining relations of certain infinite-dimensional Lie algebras, Bull. AMS, New Ser, 5 (1981) 185-189. Zbl0474.17007MR621889
- [5] H. Garland and J. Lepowsky: Lie algebra homology and the Macdonald-Kac formulas, Inventiones Math.34 (1976) 37-76. Zbl0358.17015MR414645
- [6] H. Garland: The arithmetic theory of loop algebras, J. Algebra53 (1978) 480-551. Zbl0383.17012MR502647
- [7] H. Garland: The arithmetic theory of loop groups, Publ. Math. I.H.E.S. 52 (1980) 5-136. Zbl0475.17004MR601519
- [8] V. Kac: Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestija2 (1968) 1271-1311. Zbl0222.17007MR259961
- [9] V. Kac: An algebraic definition of the compact Lie groups, Trudy MIEM5 (1969) 36-47 (in Russian).
- [10] V. Kac: Infinite-dimensional Lie algebras and Dedekind's η-function, Functional Anal. Appl.8 (1974) 68-70. Zbl0299.17005
- [11] V. Kac: Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Advances in Math.30 (1978) 85-136. Zbl0391.17010
- [12] V. Kac: Infinite root systems, representations of graphs, and invariant theory, Inventiones Math.56 (1980) 57-92. Zbl0427.17001MR557581
- [13] V. Kac and D. Peterson: Affine Lie algebras and Hecke modular forms, Bull. AMS3 (1980) 1057-1061. Zbl0457.17007MR585190
- [14] V. Kac and D. Peterson: Infinite-dimensional Lie algebras, θ-functions, and modular forms. Advances in Math.53 (1984) 125-264. Zbl0584.17007
- [15] J. Lepowsky and R.V. Moody: Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces, Math. Ann.245 (1979) 63-88. Zbl0396.17007MR552580
- [16] E. Looijenga: Root systems and elliptic curves, Inventiones Math.38 (1976) 17-32. Zbl0358.17016MR466134
- [17] E Looijenga:On the semi-universal deformation of a simple elliptic singularity II, Topology17 (1978) 23-40. Zbl0392.57013MR492380
- [18] E. Looijenga: Invariant theory for generalized root systems, Inventiones Math.61 (1980) 1-32. Zbl0436.17005MR587331
- [19] E. Looijenga: Rational surfaces with an anti-canonical cycle, Annals of Math.114 (1981) 267-322. Zbl0509.14035MR632841
- [20] I.G. Macdonald ! Affine root systems and Dedekind's η-function, Inventiones Math.15 (1972) 91-143. Zbl0244.17005
- [21] R. Marcuson: Tits' systems in generalized nonadjoint Chevalley groups, J. Algebra34 (1975) 84-96. Zbl0338.20054MR399295
- [22] J.Y. Merindol: Déformations des surfaces de del Pezzo, de points doubles rationnels et des cônes sur une courbe elliptique, Thèse 3eme cycle, Université de Paris VII, 1980.
- [23] A. Meurman: Characters of rank two hyperbolic Lie algebras as functions at quasiregular cusps. J. Algebra76 (1982) 494-504. Zbl0481.17004MR661868
- [24] R.V. Moody: A new class of Lie algebras, J. Algebra10 (1968) 211-230. Zbl0191.03005MR229687
- [25] R.V. Moody: Euclidean Lie algebras, Can. J. Math.21 (1969) 1434-1454. Zbl0194.34402MR255627
- [26] R.V. Moody, K.L. Teo: Tits' systems with cristallographic Weyl groups, J. Algebra21 (1972) 178-190. Zbl0232.20089MR320165
- [27] H. Pinkham: Simple elliptic singularities, Del Pezzo surfaces and Cremona transformations, Proc. Symp. Pure Math.30 (1977) 69-71. Zbl0391.14006MR441969
- [28] P. Slodowy: Simple singularities and simple algebraic groups, Lecture Notes In Math.815, Springer, Berlin-Heidelberg -New York (1980). Zbl0441.14002MR584445
- [29] P. Slodowy: Chevalley groups over C((t)) and deformations of simply elliptic singularities, RIMS Kokyuroku415, 19-38, Kyoto University (1981). MR708340
- [30] P. Slodowy: Adjoint quotients for Kac-Moody groups and deformations of special singularities, Seminar talks, Paris, March 1981.
- [31] P. Steinberg: Regular elements of semisimple algebraic groups, Publ. Math. I. H. E. S.25 (1965) 49-80. Zbl0136.30002MR180554
- [32] R. Steinberg: Conjugacy classes in algebraic groups, Lecture Notes in Math.366, Springer, Berlin-Heidelberg -New York (1974). Zbl0281.20037MR352279
- [33] J. Tits: Resumé de cours, Annuaire du Collège de France1980-1981, 1981-1982, Collège de France, Paris.
- [34] J. Tits: Définition par générateurs et relations de groupes avec BN-paires, C.R. Acad. Sc. Paris293 (1981) 317-322. Zbl0548.20019MR637803
- [35] E. Vinberg: Discrete linear groups generated by reflections, Math. USSR Izvestija35 (1971) 1083-1119. Zbl0256.20067MR302779
- [36] V.G. Kac and D.H. Peterson: Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Inventiones Math.76 (1984) 1-14. Zbl0534.17008MR739620
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.