Borel’s theorem for -functions on a non-archimedean valued field
Compositio Mathematica (1985)
- Volume: 55, Issue: 3, page 289-294
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchikhof, W. H.. "Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field." Compositio Mathematica 55.3 (1985): 289-294. <http://eudml.org/doc/89721>.
@article{Schikhof1985,
author = {Schikhof, W. H.},
journal = {Compositio Mathematica},
keywords = {Borel's theorem; non-Archimedean calculus; non-archimedean non-trivially valued field; -function},
language = {eng},
number = {3},
pages = {289-294},
publisher = {Martinus Nijhoff Publishers},
title = {Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field},
url = {http://eudml.org/doc/89721},
volume = {55},
year = {1985},
}
TY - JOUR
AU - Schikhof, W. H.
TI - Borel’s theorem for $C^\infty $-functions on a non-archimedean valued field
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 55
IS - 3
SP - 289
EP - 294
LA - eng
KW - Borel's theorem; non-Archimedean calculus; non-archimedean non-trivially valued field; -function
UR - http://eudml.org/doc/89721
ER -
References
top- [1] D. Barsky: Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières. Bull. Soc. Math. Fr.101, (1973) 397-411. Zbl0291.12107MR371863
- [2] W.H. Schikhof: Non-archimedean calculus (Lecture notes). Report 7812, Mathematisch Instituut, Katholieke Universiteit, Nijmegen (1978). Zbl0463.26007MR522166
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.