Sur une conjecture de Howe. I

Laurent Clozel

Compositio Mathematica (1985)

  • Volume: 56, Issue: 1, page 87-110
  • ISSN: 0010-437X

How to cite


Clozel, Laurent. "Sur une conjecture de Howe. I." Compositio Mathematica 56.1 (1985): 87-110. <>.

author = {Clozel, Laurent},
journal = {Compositio Mathematica},
keywords = {finite dimensional space of linear functions; reductive p-adic group; restrictions of invariant distributions; Howe's conjecture; tempered representation; stable invariance},
language = {fre},
number = {1},
pages = {87-110},
publisher = {Martinus Nijhoff Publishers},
title = {Sur une conjecture de Howe. I},
url = {},
volume = {56},
year = {1985},

AU - Clozel, Laurent
TI - Sur une conjecture de Howe. I
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 56
IS - 1
SP - 87
EP - 110
LA - fre
KW - finite dimensional space of linear functions; reductive p-adic group; restrictions of invariant distributions; Howe's conjecture; tempered representation; stable invariance
UR -
ER -


  1. [1] I.N. Bernstein, A.V. Zelevinski: Induced representations of reductive p-adic groups I. Ann. Sc. E.N.S.4e série 10 (1977) 441-472. Zbl0412.22015MR579172
  2. [2] A. Borel, J. Tits: Groupes réductifs sur un corps local I. Publ. Math. I.H.E.S.41 (1972) 5-252 Zbl0254.14017MR327923
  3. [3] A. Borel, N. Wallach: Continuous chohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies. Princeton U. Press (1980). Zbl0443.22010MR554917
  4. [4] W. Casselman: Characters and Jacquet modules. Math. Ann.230 (1977) 101-105. Zbl0337.22019MR492083
  5. [5] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups, to appear in Annals of Math. Studies. 
  6. [6] P. Cartier: Representations of p-adic groups. In: Automorphic Forms, Representations and L- functions, Proceedings of Symposia in Pure Math. XXXIII (1) (1979) 111-155. Zbl0421.22010MR546593
  7. [7] P. Deligne: Le support du caractère d'une représentation supercuspidale. C.R. Acad. Sc. Paris Ser. A-B283 n°4 (1976) Aii, A155-A157. Zbl0336.22009MR425033
  8. [8] Harish-Chandra: Harmonic Analysis on Reductive p-adic groups. Proc. Sympos. in Pure Math.XXVI (1974) 167-192. Zbl0289.22018MR340486
  9. [9] Harish-Chandra: Harmonic Analysis on Reductive p -adic Groups, Springer Lecture Notes in math. 162 (1970). Zbl0202.41101MR414797
  10. [10] Harish-Chandra: Admissible invariant distributions on reductive p-adic groups. Queen's Papers in Pure and Applied Math.48 (1978) 281-347. Zbl0433.22012MR579175
  11. [11] Harish- Chandra: The Plancherel formula for reductive p-adic groups, notes. Princeton: Institute for advanced Study. 
  12. [12] R Howe: Two Conjectures about Reductive p-adic Groups. Proc. Sympos. Pure Math.XXVI (1973) 377-380. Zbl0284.22004MR338278
  13. [13] R.E. Kottwitz: Orbital Integrals on GL(3). Am. J. Math.102 (1980) 327-384. Zbl0437.22011MR564478
  14. [14] P.A. Mischenko: Invariant Tempered Distributions on the Reductive p-adic group GL(n, Fp), C.R. Mathematical Reports of the Academy of Science of CanadaIV (2) (1982). Zbl0491.22008
  15. [15] J. Rogawski: Application of the building to orbital integrals, thèse. Princeton University (1980). 
  16. [16] A.J. Silberger: Introduction to Harmonic Analysis on reductive p-adic groups, Mathematical notes. Princeton U. Press (1979). Zbl0458.22006MR544991
  17. [17] A.J. Silberger: The Knapp-Stein Dimension theorem for p-adic groups. Proc. A. M. S.68 (2) 243-266. Zbl0348.22007MR492091
  18. [18] G. Van Dijk: Computation of certain induced characters of p-adic groups. Math. Ann.199 (1972) 229-240. Zbl0231.22018MR338277
  19. [19] M.-F. Vignéras: Caractérisation des intégrales orbitales sur un groupe réductif p-adique. J. Fac. Sci. Univ. Tokyo IA28 (3) 945-961. Zbl0499.22011MR656066
  20. [20] S.S. Gelbart et A.W. Knapp: L-indistinguishability and R-groups for the special linear group. Advances in Math.43 (1982) 101-121. Zbl0493.22005MR644669
  21. [21] J.D. Rogawski: Representations of GL(n) and division algebras over a p-adic field. Duke Math. J.50 (1) (1983) 161-196. Zbl0523.22015MR700135
  22. [22] A.V. Zelevinsky: Induced representations of reductive p-adic groups II. On irreducible representations of GL(n). Ann. Sc. E.N.S. Ser. 413 (1980) 165-210. Zbl0441.22014MR584084

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.