Sur une conjecture de Howe. I
Compositio Mathematica (1985)
- Volume: 56, Issue: 1, page 87-110
- ISSN: 0010-437X
Access Full Article
topHow to cite
topClozel, Laurent. "Sur une conjecture de Howe. I." Compositio Mathematica 56.1 (1985): 87-110. <http://eudml.org/doc/89731>.
@article{Clozel1985,
author = {Clozel, Laurent},
journal = {Compositio Mathematica},
keywords = {finite dimensional space of linear functions; reductive p-adic group; restrictions of invariant distributions; Howe's conjecture; tempered representation; stable invariance},
language = {fre},
number = {1},
pages = {87-110},
publisher = {Martinus Nijhoff Publishers},
title = {Sur une conjecture de Howe. I},
url = {http://eudml.org/doc/89731},
volume = {56},
year = {1985},
}
TY - JOUR
AU - Clozel, Laurent
TI - Sur une conjecture de Howe. I
JO - Compositio Mathematica
PY - 1985
PB - Martinus Nijhoff Publishers
VL - 56
IS - 1
SP - 87
EP - 110
LA - fre
KW - finite dimensional space of linear functions; reductive p-adic group; restrictions of invariant distributions; Howe's conjecture; tempered representation; stable invariance
UR - http://eudml.org/doc/89731
ER -
References
top- [1] I.N. Bernstein, A.V. Zelevinski: Induced representations of reductive p-adic groups I. Ann. Sc. E.N.S.4e série 10 (1977) 441-472. Zbl0412.22015MR579172
- [2] A. Borel, J. Tits: Groupes réductifs sur un corps local I. Publ. Math. I.H.E.S.41 (1972) 5-252 Zbl0254.14017MR327923
- [3] A. Borel, N. Wallach: Continuous chohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies. Princeton U. Press (1980). Zbl0443.22010MR554917
- [4] W. Casselman: Characters and Jacquet modules. Math. Ann.230 (1977) 101-105. Zbl0337.22019MR492083
- [5] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups, to appear in Annals of Math. Studies.
- [6] P. Cartier: Representations of p-adic groups. In: Automorphic Forms, Representations and L- functions, Proceedings of Symposia in Pure Math. XXXIII (1) (1979) 111-155. Zbl0421.22010MR546593
- [7] P. Deligne: Le support du caractère d'une représentation supercuspidale. C.R. Acad. Sc. Paris Ser. A-B283 n°4 (1976) Aii, A155-A157. Zbl0336.22009MR425033
- [8] Harish-Chandra: Harmonic Analysis on Reductive p-adic groups. Proc. Sympos. in Pure Math.XXVI (1974) 167-192. Zbl0289.22018MR340486
- [9] Harish-Chandra: Harmonic Analysis on Reductive p -adic Groups, Springer Lecture Notes in math. 162 (1970). Zbl0202.41101MR414797
- [10] Harish-Chandra: Admissible invariant distributions on reductive p-adic groups. Queen's Papers in Pure and Applied Math.48 (1978) 281-347. Zbl0433.22012MR579175
- [11] Harish- Chandra: The Plancherel formula for reductive p-adic groups, notes. Princeton: Institute for advanced Study.
- [12] R Howe: Two Conjectures about Reductive p-adic Groups. Proc. Sympos. Pure Math.XXVI (1973) 377-380. Zbl0284.22004MR338278
- [13] R.E. Kottwitz: Orbital Integrals on GL(3). Am. J. Math.102 (1980) 327-384. Zbl0437.22011MR564478
- [14] P.A. Mischenko: Invariant Tempered Distributions on the Reductive p-adic group GL(n, Fp), C.R. Mathematical Reports of the Academy of Science of CanadaIV (2) (1982). Zbl0491.22008
- [15] J. Rogawski: Application of the building to orbital integrals, thèse. Princeton University (1980).
- [16] A.J. Silberger: Introduction to Harmonic Analysis on reductive p-adic groups, Mathematical notes. Princeton U. Press (1979). Zbl0458.22006MR544991
- [17] A.J. Silberger: The Knapp-Stein Dimension theorem for p-adic groups. Proc. A. M. S.68 (2) 243-266. Zbl0348.22007MR492091
- [18] G. Van Dijk: Computation of certain induced characters of p-adic groups. Math. Ann.199 (1972) 229-240. Zbl0231.22018MR338277
- [19] M.-F. Vignéras: Caractérisation des intégrales orbitales sur un groupe réductif p-adique. J. Fac. Sci. Univ. Tokyo IA28 (3) 945-961. Zbl0499.22011MR656066
- [20] S.S. Gelbart et A.W. Knapp: L-indistinguishability and R-groups for the special linear group. Advances in Math.43 (1982) 101-121. Zbl0493.22005MR644669
- [21] J.D. Rogawski: Representations of GL(n) and division algebras over a p-adic field. Duke Math. J.50 (1) (1983) 161-196. Zbl0523.22015MR700135
- [22] A.V. Zelevinsky: Induced representations of reductive p-adic groups II. On irreducible representations of GL(n). Ann. Sc. E.N.S. Ser. 413 (1980) 165-210. Zbl0441.22014MR584084
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.