Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts

Wojciech Chojnacki

Compositio Mathematica (1986)

  • Volume: 57, Issue: 1, page 15-60
  • ISSN: 0010-437X

How to cite

top

Chojnacki, Wojciech. "Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts." Compositio Mathematica 57.1 (1986): 15-60. <http://eudml.org/doc/89748>.

@article{Chojnacki1986,
author = {Chojnacki, Wojciech},
journal = {Compositio Mathematica},
keywords = {commutative locally compact group; cosine law; continuity; representation},
language = {fre},
number = {1},
pages = {15-60},
publisher = {Martinus Nijhoff Publishers},
title = {Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts},
url = {http://eudml.org/doc/89748},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Chojnacki, Wojciech
TI - Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 1
SP - 15
EP - 60
LA - fre
KW - commutative locally compact group; cosine law; continuity; representation
UR - http://eudml.org/doc/89748
ER -

References

top
  1. [1] J.A. Baker: D'Alembert's functional equation in Banach algebras. Acta Sci. Math. (Szeged) 32 (1971) 225-234. Zbl0232.46049MR322384
  2. [2] J.A. Baker et K.R. Davidson: Cosine, exponential and quadratic functions. Glas. Math. Ser. III16 (1981) 269-274. Zbl0484.39005MR653056
  3. [3] A.O. Barut et R. Raczka: Theory of Group Representations and Applications. Warszawa: Polish Scientific Publishers (1980). Zbl0471.22021MR495836
  4. [4] J.J. Benedetto: Spectral Synthesis. Stuttgart: Teubner (1975). Zbl0314.43011MR622037
  5. [5] N. Bourbaki: Eléments de mathématique, Intégration, Chapitre V: Intégration des mesures. Paris: Hermann (1967). Zbl0143.27101MR209424
  6. [6] A.B. Buche: On the cosine-sine operator functional equations. Aequations Math.6 (1971) 231-234. Zbl0232.47044MR291872
  7. [7] R. Chandler et H. Singh: On the measurability and continuity properties of the cosine operator. Indian J. Pure Appl. Math.12 (1981) 81-83. Zbl0454.47020MR617855
  8. [8] G. Da Prato et E. Giusti: Una caratterizzazione dei generatori di funzioni coseno astratte. Boll. Un. Mat. Ital.22 (1967) 357-362. Zbl0186.47702MR240672
  9. [9] M.M. Day: Ergodic theorems for abelian semigroups. Trans. Amer. Math. Soc.51 (1942) 399-412. Zbl0063.01057MR6614JFM68.0246.01
  10. [10] J. Dixmier: Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math. (Szeged) 12A (1950) 213-227. Zbl0037.15501MR37470
  11. [11] R. Doss: Aproximation and representations for Fourier transforms. Trans. Amer. Math. Soc.153 (1971) 211-221. Zbl0208.37901MR268597
  12. [12] N. Dunford et J.T. Schwartz: Linear Operators, Part III: Spectral Operators. New York: Wiley-Interscience (1971). Zbl0128.34803MR412888
  13. [13] W.F. Eberlein: A note on Fourier-Stieltjes transforms. Proc. Amer. Math. Soc.6 (1955) 310-312. Zbl0065.01604MR68030
  14. [14] H.O. Fattorini: Ordinary differential equations in linear topological spaces. I. J. Differential Equations5 (1968) 72-105. Zbl0175.15101
  15. [15] H.O. Fattorini: Ordinary differential equations in linear topological spaces. II. J. Differential equations6 (1969) 50-70. Zbl0181.42801
  16. [16] H.O. Fattorini: Uniformly bounded cosine functions in Hilbert space. Indiana Univ. Math. J.20 (1970) 411-425. Zbl0185.38501MR267417
  17. [17] H.O. Fattorini: Some remarks on second-order abstract Cauchy problems. Funkcial. Ekvac.24 (1981) 331-344. Zbl0488.34051MR655504
  18. [18] G.D. Faulkner et R.W. Shonkwiler: Cosine representations of abelian *-semigroups and generalized cosine operator functions. Canad. J. Math.30 (1978) 474-482. Zbl0358.47021MR500282
  19. [19] B. Fuglede: A commutativity theorem for normal operators. Proc. Amer. Math. Soc.36 (1950) 35-40. Zbl0035.35804MR32944
  20. [20] E. Giusti: Funzioni coseno periodiche. Boll. Un. Mat. Ital.22 (1967) 478-485. Zbl0182.19304MR233237
  21. [21] J.A. Goldstein: Semigroups and second-order differential equations. J. Funct. Anal.4 (1969) 50-70. Zbl0179.14605MR254668
  22. [22] J.A. Goldstein: On a connection between first and second order differential equations in Banach spaces. J. Math. Anal. Appl.30 (1970) 246-251. Zbl0197.12106MR257532
  23. [23] J.A. Goldstein: On the convergence and approximation of cosine functions. Aequationes Math.10 (1974) 201-205. Zbl0282.47012MR358435
  24. [24] J.A. Goldstein, Ch. RADIN et R.E. Showalter: Convergence rates of ergodic limits for semigroups and cosine functions. Semigroup Forum16 (1978) 89-95. Zbl0393.47004MR487585
  25. [25] C.C. Graham et O.C. Mcgehee: Essays in Commutative Harmonic Analysis. New York: Springer (1979). Zbl0439.43001MR550606
  26. [26] C.C. Graham et L.T. Ramsey: Three results on I-sets, Colloq. Math. (à paraître). Zbl0621.43009MR891281
  27. [27] F.P. Greenleaf: Invariant Means on Topological Groups and Their Applications. New York: Van Nostrand (1969). Zbl0174.19001MR251549
  28. [28] E. Hewitt et K.A. Ross: Abstract Harmonic Analysis, Volumes I et II. Berlin: Springer (1963 et 1970). Zbl0213.40103MR262773
  29. [29] E. Hewitt et K. Stromberg: Real and Abstract Analysis. Berlin: Springer (1969). Zbl0225.26001MR367121
  30. [30] PL. Kannappan: The functional equation f(xy)+f(xy-1)=2f(x)f(y) for groups. Proc. Amer. Math. Soc.19 (1968) 69-74. Zbl0169.48102MR219936
  31. [31] J. Kisyński: On second order Cauchy's problem in a Banach space. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.18 (1970) 371-374. Zbl0202.10102MR269958
  32. [32] J. Kisyński: On operator-valued solutions of d'Alembert's functional equation I. Colloq. Math.23 (1971) 107-114. Zbl0239.39004MR313875
  33. [33] J. Kisyński: On operator-valued solutions of d'Alembert's functional equation II. Studia Math.42 (1972) 43-66. Zbl0239.39005MR313876
  34. [34] J. Kisyński: On cosine operator functions and one-parameter groups of operators. Studia Math.44 (1972) 93-105. Zbl0216.42104MR312328
  35. [35] Y. Konishi: Cosine functions of operators in locally convex spaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math.18 (1971/72) 443-463. Zbl0239.47034MR324479
  36. [36] S. Kurepa: A cosine functional equation in n-dimensional vector space. Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske13 (1958) 169-189. Zbl0082.32802MR100728
  37. [37] S. Kurepa: A cosine functional equation in Hilbert space. Canad. J. Math.19 (1960) 45-50. Zbl0090.10001MR109265
  38. [38] S. Kurepa: On some functional equations in Banach spaces. Studia Math.19 (1960) 149-158. Zbl0100.32702MR118986
  39. [39] S. Kurepa: A cosine functional equation in Banach algebras. Acta Sci. Math. (Szeged) 23 (1962) 255-267. Zbl0113.31702MR145370
  40. [40] S. Kurepa: Uniformly bounded cosine function in a Banach space. Math. Balkanica2 (1972) 109-115. Zbl0261.46050MR320819
  41. [41] S. Kurepa: Weakly measurable selfadjoint cosine function. Glas. Mat. Ser. III8 (1973) 73-79. Zbl0262.47011MR333825
  42. [42] S. Kurepa: Decomposition of weakly measurable semigroups and cosine operator functions. Glas. Mat. Ser. III11 (1976) 91-95. Zbl0329.47013MR407659
  43. [43] S. Kurepa: Semigroups and cosine functions. Functional Analysis; Proceedings of a conference held at Dubrovnik, Yugoslavia, 1981. Lecture Notes in Math.948 (1982) 48-72. Zbl0513.47028MR672792
  44. [44] D. Lutz: Which operators generate cosine operator functions? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1978) 314-317. Zbl0435.47044MR548593
  45. [45] D. Lutz: Compactness properties of operator cosine functions. C. R. Math. Rep. Acad. Sci. Canada2 (1980) 277-280. Zbl0448.47021MR600561
  46. [46] D. Lutz: Über operatorwertige Lösungen der Funktionalgleichung des Cosinus. Math. Z.171 (1980) 233-245. Zbl0414.47021MR575242
  47. [47] D. Lutz: Periodische operatorwertige Cosinusfunktionen. Resultate Math.4 (1981) 75-83. Zbl0461.47021MR625115
  48. [48] D. Lutz: On bounded time-dependent perturbations of operator cosine functions. Aequationes Math.23 (1981) 197-203. Zbl0512.34047MR689033
  49. [49] D. Lutz: Strongly continuous operator cosine functions. Functional Analysis; Proceedings of a conference held at Dubrovnik, Yugoslavia, 1981. Lecture Notes in Math.948 (1982) 73-97. Zbl0493.47020MR672793
  50. [50] D. Lutz: Über die Konvergenz operatorwertiger Cosinusfunktionen mit gestortem infinitesimalen Erzeuger. Period. Math. Hungar.14 (1983) 101-105. Zbl0489.47025MR697362
  51. [51] G. Maltese: Spectral representations for solutions of certain abstract functional equations. Compositio Math.15 (1962) 1-22. Zbl0108.11602MR152901
  52. [52] G. Maltese: Spectral representations for some unbounded normal operators. Trans. Amer. Math. Soc.110 (1964) 79-87. Zbl0134.31903MR156209
  53. [53] S.A. Morris: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge: Cambridge University Press (1977). Zbl0446.22006MR442141
  54. [54] B. Nagy: On the generators of cosine operator functions. Publ. Math. Debrecen21 (1974) 151-154. Zbl0314.47018MR361926
  55. [55] B. Nagy: On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged) 36 (1974) 281-289. Zbl0273.47008MR374995
  56. [56] B. Nagy: Cosine operator functions and the abstract Cauchy problem. Period. Math. Hungar.7 (1976) 213-217. Zbl0329.34051MR450730
  57. [57] B. Nagy: Approximation theorems for cosine operator functions. Acta Math. Acad. Sci. Hungar.29 (1977) 69-76. Zbl0346.47041MR440419
  58. [58] S. Nelson et R. Triggiani: Analytic properties of cosine operators. Proc. Amer. Math. Soc.74 (1979) 101-104. Zbl0412.47023MR521880
  59. [59] C.R. Putnam: On normal operator in Hilbert space. Amer. J. Math.73 (1951) 357-362. Zbl0042.34501MR40585
  60. [60] S.M. Rankin III: A remark on cosine families. Proc. Amer. Math. Soc.79 (1980) 376-378. Zbl0456.47033MR567976
  61. [61] M. Rosenblum: On a theorem of Fuglede and Putnam. J. London Math. Soc.33 (1958) 376-377. Zbl0081.11902MR99598
  62. [62] N. Sarapa: A note on the cosine equation for probability on compact semigroups. Glas. Mat. Ser. III15 (1980) 383-385. Zbl0466.60012MR608888
  63. [63] M. Sova: Cosine operator functions. Dissertationes Math. (Rozprawy Mat.)49 (1966) 1-47. Zbl0156.15404MR193525
  64. [64] M. Sova: Semigroups and cosine functions of normal operators in Hilbert spaces. Časopis Pěst. Mat.93 (1968) 437-458. Zbl0172.40606MR250121
  65. [65] T. Takenaka et N. Okazawa: A Phillips-Miyadera type perturbation theorem for cosine functions of operators. Tôhuku Math. J.30 (1978) 107-115. Zbl0398.47030MR470751
  66. [66] C.C. Travis et G.F. Webb: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houston J. Math.3 (1977) 555-567. Zbl0386.47024MR500288
  67. [67] C.C. Travis et G.F. Webb: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar.32 (1978) 75-96. Zbl0388.34039MR499581
  68. [68] C.C. Travis et G.F. Webb: An abstract second order semilinear Volterra integrodifferential equation. SIAM J. Math. Anal.10 (1978) 412-424. Zbl0406.45014MR523855
  69. [69] S. Tymowski: On the analogue of the formula cos t = 12eit + 12e-it for operator cosine functions. Comment. Math. Prace Mat.23 (1983) 173-182. Zbl0594.47035MR709186
  70. [70] F. Vajzović: Einige Funktionalgleichungen im Fréchetschen Raum. Glas. Mat. Ser. III3 (1968) 19-40. Zbl0162.46302MR234159
  71. [71] J. Wermer: Commuting spectral measures on Hilbert space. Pacific J. Math.4 (1954) 355-361. Zbl0056.34701MR63564

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.