Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts

Wojciech Chojnacki

Compositio Mathematica (1986)

  • Volume: 57, Issue: 1, page 15-60
  • ISSN: 0010-437X

How to cite

top

Chojnacki, Wojciech. "Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts." Compositio Mathematica 57.1 (1986): 15-60. <http://eudml.org/doc/89748>.

@article{Chojnacki1986,
author = {Chojnacki, Wojciech},
journal = {Compositio Mathematica},
keywords = {commutative locally compact group; cosine law; continuity; representation},
language = {fre},
number = {1},
pages = {15-60},
publisher = {Martinus Nijhoff Publishers},
title = {Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts},
url = {http://eudml.org/doc/89748},
volume = {57},
year = {1986},
}

TY - JOUR
AU - Chojnacki, Wojciech
TI - Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 57
IS - 1
SP - 15
EP - 60
LA - fre
KW - commutative locally compact group; cosine law; continuity; representation
UR - http://eudml.org/doc/89748
ER -

References

top
  1. [1] J.A. Baker: D'Alembert's functional equation in Banach algebras. Acta Sci. Math. (Szeged) 32 (1971) 225-234. Zbl0232.46049MR322384
  2. [2] J.A. Baker et K.R. Davidson: Cosine, exponential and quadratic functions. Glas. Math. Ser. III16 (1981) 269-274. Zbl0484.39005MR653056
  3. [3] A.O. Barut et R. Raczka: Theory of Group Representations and Applications. Warszawa: Polish Scientific Publishers (1980). Zbl0471.22021MR495836
  4. [4] J.J. Benedetto: Spectral Synthesis. Stuttgart: Teubner (1975). Zbl0314.43011MR622037
  5. [5] N. Bourbaki: Eléments de mathématique, Intégration, Chapitre V: Intégration des mesures. Paris: Hermann (1967). Zbl0143.27101MR209424
  6. [6] A.B. Buche: On the cosine-sine operator functional equations. Aequations Math.6 (1971) 231-234. Zbl0232.47044MR291872
  7. [7] R. Chandler et H. Singh: On the measurability and continuity properties of the cosine operator. Indian J. Pure Appl. Math.12 (1981) 81-83. Zbl0454.47020MR617855
  8. [8] G. Da Prato et E. Giusti: Una caratterizzazione dei generatori di funzioni coseno astratte. Boll. Un. Mat. Ital.22 (1967) 357-362. Zbl0186.47702MR240672
  9. [9] M.M. Day: Ergodic theorems for abelian semigroups. Trans. Amer. Math. Soc.51 (1942) 399-412. Zbl0063.01057MR6614JFM68.0246.01
  10. [10] J. Dixmier: Les moyennes invariantes dans les semi-groupes et leurs applications. Acta Sci. Math. (Szeged) 12A (1950) 213-227. Zbl0037.15501MR37470
  11. [11] R. Doss: Aproximation and representations for Fourier transforms. Trans. Amer. Math. Soc.153 (1971) 211-221. Zbl0208.37901MR268597
  12. [12] N. Dunford et J.T. Schwartz: Linear Operators, Part III: Spectral Operators. New York: Wiley-Interscience (1971). Zbl0128.34803MR412888
  13. [13] W.F. Eberlein: A note on Fourier-Stieltjes transforms. Proc. Amer. Math. Soc.6 (1955) 310-312. Zbl0065.01604MR68030
  14. [14] H.O. Fattorini: Ordinary differential equations in linear topological spaces. I. J. Differential Equations5 (1968) 72-105. Zbl0175.15101
  15. [15] H.O. Fattorini: Ordinary differential equations in linear topological spaces. II. J. Differential equations6 (1969) 50-70. Zbl0181.42801
  16. [16] H.O. Fattorini: Uniformly bounded cosine functions in Hilbert space. Indiana Univ. Math. J.20 (1970) 411-425. Zbl0185.38501MR267417
  17. [17] H.O. Fattorini: Some remarks on second-order abstract Cauchy problems. Funkcial. Ekvac.24 (1981) 331-344. Zbl0488.34051MR655504
  18. [18] G.D. Faulkner et R.W. Shonkwiler: Cosine representations of abelian *-semigroups and generalized cosine operator functions. Canad. J. Math.30 (1978) 474-482. Zbl0358.47021MR500282
  19. [19] B. Fuglede: A commutativity theorem for normal operators. Proc. Amer. Math. Soc.36 (1950) 35-40. Zbl0035.35804MR32944
  20. [20] E. Giusti: Funzioni coseno periodiche. Boll. Un. Mat. Ital.22 (1967) 478-485. Zbl0182.19304MR233237
  21. [21] J.A. Goldstein: Semigroups and second-order differential equations. J. Funct. Anal.4 (1969) 50-70. Zbl0179.14605MR254668
  22. [22] J.A. Goldstein: On a connection between first and second order differential equations in Banach spaces. J. Math. Anal. Appl.30 (1970) 246-251. Zbl0197.12106MR257532
  23. [23] J.A. Goldstein: On the convergence and approximation of cosine functions. Aequationes Math.10 (1974) 201-205. Zbl0282.47012MR358435
  24. [24] J.A. Goldstein, Ch. RADIN et R.E. Showalter: Convergence rates of ergodic limits for semigroups and cosine functions. Semigroup Forum16 (1978) 89-95. Zbl0393.47004MR487585
  25. [25] C.C. Graham et O.C. Mcgehee: Essays in Commutative Harmonic Analysis. New York: Springer (1979). Zbl0439.43001MR550606
  26. [26] C.C. Graham et L.T. Ramsey: Three results on I-sets, Colloq. Math. (à paraître). Zbl0621.43009MR891281
  27. [27] F.P. Greenleaf: Invariant Means on Topological Groups and Their Applications. New York: Van Nostrand (1969). Zbl0174.19001MR251549
  28. [28] E. Hewitt et K.A. Ross: Abstract Harmonic Analysis, Volumes I et II. Berlin: Springer (1963 et 1970). Zbl0213.40103MR262773
  29. [29] E. Hewitt et K. Stromberg: Real and Abstract Analysis. Berlin: Springer (1969). Zbl0225.26001MR367121
  30. [30] PL. Kannappan: The functional equation f(xy)+f(xy-1)=2f(x)f(y) for groups. Proc. Amer. Math. Soc.19 (1968) 69-74. Zbl0169.48102MR219936
  31. [31] J. Kisyński: On second order Cauchy's problem in a Banach space. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.18 (1970) 371-374. Zbl0202.10102MR269958
  32. [32] J. Kisyński: On operator-valued solutions of d'Alembert's functional equation I. Colloq. Math.23 (1971) 107-114. Zbl0239.39004MR313875
  33. [33] J. Kisyński: On operator-valued solutions of d'Alembert's functional equation II. Studia Math.42 (1972) 43-66. Zbl0239.39005MR313876
  34. [34] J. Kisyński: On cosine operator functions and one-parameter groups of operators. Studia Math.44 (1972) 93-105. Zbl0216.42104MR312328
  35. [35] Y. Konishi: Cosine functions of operators in locally convex spaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math.18 (1971/72) 443-463. Zbl0239.47034MR324479
  36. [36] S. Kurepa: A cosine functional equation in n-dimensional vector space. Glasnik Mat.-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske13 (1958) 169-189. Zbl0082.32802MR100728
  37. [37] S. Kurepa: A cosine functional equation in Hilbert space. Canad. J. Math.19 (1960) 45-50. Zbl0090.10001MR109265
  38. [38] S. Kurepa: On some functional equations in Banach spaces. Studia Math.19 (1960) 149-158. Zbl0100.32702MR118986
  39. [39] S. Kurepa: A cosine functional equation in Banach algebras. Acta Sci. Math. (Szeged) 23 (1962) 255-267. Zbl0113.31702MR145370
  40. [40] S. Kurepa: Uniformly bounded cosine function in a Banach space. Math. Balkanica2 (1972) 109-115. Zbl0261.46050MR320819
  41. [41] S. Kurepa: Weakly measurable selfadjoint cosine function. Glas. Mat. Ser. III8 (1973) 73-79. Zbl0262.47011MR333825
  42. [42] S. Kurepa: Decomposition of weakly measurable semigroups and cosine operator functions. Glas. Mat. Ser. III11 (1976) 91-95. Zbl0329.47013MR407659
  43. [43] S. Kurepa: Semigroups and cosine functions. Functional Analysis; Proceedings of a conference held at Dubrovnik, Yugoslavia, 1981. Lecture Notes in Math.948 (1982) 48-72. Zbl0513.47028MR672792
  44. [44] D. Lutz: Which operators generate cosine operator functions? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1978) 314-317. Zbl0435.47044MR548593
  45. [45] D. Lutz: Compactness properties of operator cosine functions. C. R. Math. Rep. Acad. Sci. Canada2 (1980) 277-280. Zbl0448.47021MR600561
  46. [46] D. Lutz: Über operatorwertige Lösungen der Funktionalgleichung des Cosinus. Math. Z.171 (1980) 233-245. Zbl0414.47021MR575242
  47. [47] D. Lutz: Periodische operatorwertige Cosinusfunktionen. Resultate Math.4 (1981) 75-83. Zbl0461.47021MR625115
  48. [48] D. Lutz: On bounded time-dependent perturbations of operator cosine functions. Aequationes Math.23 (1981) 197-203. Zbl0512.34047MR689033
  49. [49] D. Lutz: Strongly continuous operator cosine functions. Functional Analysis; Proceedings of a conference held at Dubrovnik, Yugoslavia, 1981. Lecture Notes in Math.948 (1982) 73-97. Zbl0493.47020MR672793
  50. [50] D. Lutz: Über die Konvergenz operatorwertiger Cosinusfunktionen mit gestortem infinitesimalen Erzeuger. Period. Math. Hungar.14 (1983) 101-105. Zbl0489.47025MR697362
  51. [51] G. Maltese: Spectral representations for solutions of certain abstract functional equations. Compositio Math.15 (1962) 1-22. Zbl0108.11602MR152901
  52. [52] G. Maltese: Spectral representations for some unbounded normal operators. Trans. Amer. Math. Soc.110 (1964) 79-87. Zbl0134.31903MR156209
  53. [53] S.A. Morris: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge: Cambridge University Press (1977). Zbl0446.22006MR442141
  54. [54] B. Nagy: On the generators of cosine operator functions. Publ. Math. Debrecen21 (1974) 151-154. Zbl0314.47018MR361926
  55. [55] B. Nagy: On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged) 36 (1974) 281-289. Zbl0273.47008MR374995
  56. [56] B. Nagy: Cosine operator functions and the abstract Cauchy problem. Period. Math. Hungar.7 (1976) 213-217. Zbl0329.34051MR450730
  57. [57] B. Nagy: Approximation theorems for cosine operator functions. Acta Math. Acad. Sci. Hungar.29 (1977) 69-76. Zbl0346.47041MR440419
  58. [58] S. Nelson et R. Triggiani: Analytic properties of cosine operators. Proc. Amer. Math. Soc.74 (1979) 101-104. Zbl0412.47023MR521880
  59. [59] C.R. Putnam: On normal operator in Hilbert space. Amer. J. Math.73 (1951) 357-362. Zbl0042.34501MR40585
  60. [60] S.M. Rankin III: A remark on cosine families. Proc. Amer. Math. Soc.79 (1980) 376-378. Zbl0456.47033MR567976
  61. [61] M. Rosenblum: On a theorem of Fuglede and Putnam. J. London Math. Soc.33 (1958) 376-377. Zbl0081.11902MR99598
  62. [62] N. Sarapa: A note on the cosine equation for probability on compact semigroups. Glas. Mat. Ser. III15 (1980) 383-385. Zbl0466.60012MR608888
  63. [63] M. Sova: Cosine operator functions. Dissertationes Math. (Rozprawy Mat.)49 (1966) 1-47. Zbl0156.15404MR193525
  64. [64] M. Sova: Semigroups and cosine functions of normal operators in Hilbert spaces. Časopis Pěst. Mat.93 (1968) 437-458. Zbl0172.40606MR250121
  65. [65] T. Takenaka et N. Okazawa: A Phillips-Miyadera type perturbation theorem for cosine functions of operators. Tôhuku Math. J.30 (1978) 107-115. Zbl0398.47030MR470751
  66. [66] C.C. Travis et G.F. Webb: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houston J. Math.3 (1977) 555-567. Zbl0386.47024MR500288
  67. [67] C.C. Travis et G.F. Webb: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hungar.32 (1978) 75-96. Zbl0388.34039MR499581
  68. [68] C.C. Travis et G.F. Webb: An abstract second order semilinear Volterra integrodifferential equation. SIAM J. Math. Anal.10 (1978) 412-424. Zbl0406.45014MR523855
  69. [69] S. Tymowski: On the analogue of the formula cos t = 12eit + 12e-it for operator cosine functions. Comment. Math. Prace Mat.23 (1983) 173-182. Zbl0594.47035MR709186
  70. [70] F. Vajzović: Einige Funktionalgleichungen im Fréchetschen Raum. Glas. Mat. Ser. III3 (1968) 19-40. Zbl0162.46302MR234159
  71. [71] J. Wermer: Commuting spectral measures on Hilbert space. Pacific J. Math.4 (1954) 355-361. Zbl0056.34701MR63564

NotesEmbed ?

top

You must be logged in to post comments.