Spectral representations for solutions of certain abstract functional equations

George Maltese

Compositio Mathematica (1962-1964)

  • Volume: 15, page 1-22
  • ISSN: 0010-437X

How to cite

top

Maltese, George. "Spectral representations for solutions of certain abstract functional equations." Compositio Mathematica 15 (1962-1964): 1-22. <http://eudml.org/doc/88873>.

@article{Maltese1962-1964,
author = {Maltese, George},
journal = {Compositio Mathematica},
keywords = {functional analysis},
language = {eng},
pages = {1-22},
publisher = {Kraus Reprint},
title = {Spectral representations for solutions of certain abstract functional equations},
url = {http://eudml.org/doc/88873},
volume = {15},
year = {1962-1964},
}

TY - JOUR
AU - Maltese, George
TI - Spectral representations for solutions of certain abstract functional equations
JO - Compositio Mathematica
PY - 1962-1964
PB - Kraus Reprint
VL - 15
SP - 1
EP - 22
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/88873
ER -

References

top
  1. Yu Berezanski and S. Krein [1] Hypercomplex systems with continual bases, Uspehi. Math. Nauk., 12 (1957) 147-152. MR86272
  2. N. Bourbaki [2] Intégration, chap. I-V (1952-1956). Zbl0049.31703
  3. N. Bourbaki [8] Espaces vectoriels topologiques, chap. I-V (1958 -1955). Zbl0066.35301
  4. A. Cauchy [4] Cours d'analyse, (1821). 
  5. J. Dieudonné [5] Sur les espaces de Köthe, Jour. Analyse Math., 1 (1951), 81-115. Zbl0044.11703MR41347
  6. J. Dixmier [6] Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math., 2 (1951) 151-182. Zbl0045.38002MR48787
  7. J. Dixmier [7] Les algèbres d'opérateurs dans l'espace hilbertien, (1957). Zbl0088.32304
  8. N. Dunford and E. Hille [8] The differentiability and uniqueness of continuous solutions of addition formulas, Bull. AMS, 58 (1947) 799-805. Zbl0032.21203MR21663
  9. R. Godement [9] Sur la théorie des représentations unitaires, Annals of Math., 58 (1951) 68-124. Zbl0042.34606MR38571
  10. P. Halmos [10] Introduction to Hilbert space and the theory of spectral multiplicity (1951). Zbl0045.05702MR45309
  11. E. Hille [11] Functional analysis and semi-groups, AMS, Coll. Publ. XXXI, (1948). Zbl0033.06501MR25077
  12. E. Hille and R. Phillips [12] Functional analysis and semi-groups, AMS Coll. Publ. XXXI, (1957). Zbl0078.10004MR89373
  13. C. Ionescu Tulcea [18] Sur certaines classes de fonctions de type positif, Ann. Ec. Norm. Sup.74 (1957) 231-248. Zbl0088.09102MR92105
  14. C. Ionescu Tulcea [14] Spectral representations of semi-groups of normal operators. Proc. Nat. Acad. Sci. USA, 44 (1958) 44-45. Zbl0083.11201MR96133
  15. C. Ionescu Tulcea [15] Spectral representations of certain semi-groups of operators, Jour. Math. Mech., 8 (1959) 95-110. Zbl0087.31904MR101496
  16. C. Ionescu Tulcea [16] Suboperative functions and semi-groups of operators, Arkiv. för Math., 4 (1959) 55-61. Zbl0095.10503MR146674
  17. C. Ionescu Tulcea, and A. Simon [17] Spectral representations and unbounded convolution operators, Proc. Nat. Acad. Sci. USA, 45 (1959) 1765-1767. Zbl0090.33103MR110026
  18. C. Ionescu Tulcea and A. Simon [18] Generalized convolution algebras, (unpublished manuscript). 
  19. S. Kaczmarz [19] Sur l'équation fonctionnelle f(x) +f(x+y) = ϕ(y)f(x + y/2)Fund. Math., 6. (1924) 122-129. JFM50.0183.02
  20. S. Kurepa [20] A cosine functional equation in n-dimensional vector space, Glasnik mat. fiz. i astr., 13 (1958) 189-189. Zbl0082.32802MR100728
  21. S. Kurepa [21] A cosine functional equation in Hilbert space, Can. Jour. Math., 12 (1960) 45-50. Zbl0090.10001MR109265
  22. J. Lee [22] Addition theorems in abstract spaces, (1950) (Yale thesis. 
  23. G. Maltese [23] Generalized convolution algebras and spectral representations (1960) (Yale thesis). 
  24. M. Nagumo [24] Einige analytische Untersuchungen in linearen metrischen Ringen, Jap. Jour. Math., 13 (1936) 61-80. Zbl0015.24401JFM62.0449.01
  25. D. Nathan [25] One-parameter groups of transformations in abstract vector spaces, Duke Jour., 1 (1935) 518-526. Zbl0013.20904MR1545897JFM61.0473.03
  26. A. Nussbaum [26] The Hausdorff-Bemstein-Widder theorem for semi-groups in locally compact Abelian groups, Duke Jour., 22 (1955) 578-582. Zbl0066.36001MR75573
  27. A. Nussbaum [27] Integral representation of semi-groups of unbounded self-adjoint operators, Annals of Math., 69 (1959) 133-141. Zbl0086.31902MR101495
  28. W. Osgood [28] Lehrbuch der Funktionentheorie, (1928). JFM54.0326.10
  29. R. Phillips [29] Spectral theory for semi-groups of linear operators, Trans. AMS, 71 (1951) 393-415. Zbl0045.21502MR44737
  30. E. Picard [80] Leçons sur quelques équations fonctionnelles, (1928). Zbl54.0426.02
  31. A. Povzner [31] On differential equations of Sturm-Liouville type on a half-axis, AMS Translation no. 5 (1950). MR32879
  32. B. Sz. Nagy [82] Spektraldarstellungen Linearer Transformationen des Hilbertschen Raumes, (1942). Zbl0027.22701
  33. E. Van Vleck [33] A functional equation for the sine, Annals of Math., 11 (1910) 161-165. Zbl41.0375.03MR1502405JFM41.0375.03
  34. A. Weil [84] L'intégration dans les groupes topologiques et ses applications, (1988). Zbl0063.08195JFM66.1205.02
  35. K. Yosida [85] On the group embedded in the metrical complete ring, Jap. Jour. Math., 18 (1936) 7-26, 459-472. Zbl0018.39302JFM63.0345.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.