On arithmetic quotients of the Siegel upper half space of degree two
Compositio Mathematica (1986)
- Volume: 58, Issue: 2, page 233-258
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchwermer, Joachim. "On arithmetic quotients of the Siegel upper half space of degree two." Compositio Mathematica 58.2 (1986): 233-258. <http://eudml.org/doc/89770>.
@article{Schwermer1986,
author = {Schwermer, Joachim},
journal = {Compositio Mathematica},
keywords = {Eisenstein cohomology; symplectic group; Borel-Serre compactification; symmetric space; Eisenstein series},
language = {eng},
number = {2},
pages = {233-258},
publisher = {Martinus Nijhoff Publishers},
title = {On arithmetic quotients of the Siegel upper half space of degree two},
url = {http://eudml.org/doc/89770},
volume = {58},
year = {1986},
}
TY - JOUR
AU - Schwermer, Joachim
TI - On arithmetic quotients of the Siegel upper half space of degree two
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 58
IS - 2
SP - 233
EP - 258
LA - eng
KW - Eisenstein cohomology; symplectic group; Borel-Serre compactification; symmetric space; Eisenstein series
UR - http://eudml.org/doc/89770
ER -
References
top- [1] A. Borel: Introduction aux groupes arithmétiques. Paris: Hermann (1969). Zbl0186.33202MR244260
- [2] A. Borel: Stable real cohomology of arithmetic groups II. In: J. Hano et al. (ed.), Manifolds and Lie groups. Progress in Maths., Vol. 14, pp. 21-55. Boston -Basel-Stuttgart (1981). Zbl0483.57026MR642850
- [3] A. Borel and J-P. SERRE: Corners and arithmetic groups. Comment. Math. Helvetici48 (1973) 436-491. Zbl0274.22011MR387495
- [4] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups. Annals of Math. Studies94, Princeton: University Press (1980). Zbl0443.22010MR554917
- [5] A. Dold: Lectures on algebraic topology. Grundlehren d. math. Wiss., 200. Berlin- Heidelberg-New York: Springer (1972). Zbl0234.55001MR415602
- [6] S. Gelbart: Holomorphic discrete series for the real symplectic group. Inventiones math.19 (1973) 49-58. Zbl0236.22013MR320231
- [7] G. Harder: On the cohomology of discrete arithmetically defined groups. In: Proc. of the Int. Colloq. on Discrete Subgroups of Liegroups and appl. to Moduli (Bombay1973), pp. 129-160Oxford: University Press (1975). Zbl0317.57022MR425018
- [8] G. Harder: Period integrals of Eisenstein cohomology classes and special values of some L-functions. In: Ed. N. Koblitz, Number theory related to Fermat's last theorem. Progress in Maths., Vol. 26, pp. 103-142, Boston- Basel-Stuttgart (1982). Zbl0517.12008MR685293
- [9] G. Harder: General aspects in the theory of modular symbols. In: Seminaire de theorie des nombres. Progress in Maths., Vol. 38, pp. 73-88, Boston (1983). Zbl0526.10027MR729161
- [10] G. Harder: Eisenstein cohomology of arithmetic groups: The case GL2. Preprint (1984). Zbl0629.10023
- [11] Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math.116 (1966) 1-111. Zbl0199.20102MR219666
- [12] Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. Notes in Maths., 62, Berlin- Heidelberg-New York: Springer (1968). Zbl0186.04702MR232893
- [13] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math.74 (1961) 329-387. Zbl0134.03501MR142696
- [14] R.P. Langlands: Modular forms and l-adic representations. In: Modular Functions of one variable II, Lect. Notes in Maths., 349, pp. 361-500, Berlin- Heidelberg-New York: Springer (1973). Zbl0279.14007MR354617
- [15] R.P. Langlands: On the functional equations satisfied by Eisenstein series. Lect. Notes in Maths., 544, Berlin-Heidelberg- New York: Springer (1976). Zbl0332.10018MR579181
- [16] R. Lee and J. Schwermer: Cohomology of arithmetic subgroups of SL3 at infinity. Journal f. d. reine u. angew. Math.330 (1982) 100-131. Zbl0463.57014MR641814
- [17] R. Lee and J. Schwermer: The Lefschetz number of an involution on the space of harmonic cusp forms of SL3. Inventiones math.73 (1983) 189-239. Zbl0525.10014MR714089
- [18] R. Lee and R. Szczarba: On the homology and cohomology of congruence subgroups. Inventiones math.33 (1976) 15-53. Zbl0332.18015MR422498
- [19] J. Mennicke: Zur Theorie der Siegelschen Modulgruppe. Math. Annalen159 (1965) 115-129. Zbl0134.26502MR181676
- [20] M.S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for Hermitian symmetric pairs of noncompact type. Ann. of Math.93 (1970) 486-511. Zbl0257.22013MR274657
- [21] J. Schwermer: Sur la cohomologie des sous-groupes de congruence de SL3(Z). C.R. Acad. Sc. Paris283 (1976) 817-820. Zbl0354.57014MR430155
- [22] J. Schwermer: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lect. Notes in Maths., 988. Berlin-Heidelberg -New York-Tokyo: Springer (1983). Zbl0506.22015MR822473
- [23] J. Schwermer: Holomorphy of Eisenstein series at special points and cohomology of arithmetic subgroups of SLn(Q). Journal f.d. reine u. angew. Math.364 (1986) 193-220. Zbl0571.10032MR817646
- [24] J. Schwermer: Euler products and the cohomology of arithmetic quotients of the Siegel upper half space of degree two. (In preparation.)
- [25] J. Schwermer: Eisensteinreihen und die Kohomologie von Kongruenzuntergruppen von SLn(Z). Bonner Math. Schriften, no. 99 (1977). Zbl0389.57017MR498403
- [26] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan11, Princeton: University Press (1971). Zbl0221.10029MR314766
- [27] D.A. Vogan, JR.: Representations of real reductive Lie groups. Progress in maths., Vol. 15, Boston-Basel-Stuttgart: Birkhäuser (1981). Zbl0469.22012MR632407
- [28] D.A. Vogan, JR. and G. Zuckerman: Unitary representations with non-zero cohomology. Compositio Math.53 (1984) 51-90. Zbl0692.22008MR762307
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.