On arithmetic quotients of the Siegel upper half space of degree two

Joachim Schwermer

Compositio Mathematica (1986)

  • Volume: 58, Issue: 2, page 233-258
  • ISSN: 0010-437X

How to cite


Schwermer, Joachim. "On arithmetic quotients of the Siegel upper half space of degree two." Compositio Mathematica 58.2 (1986): 233-258. <http://eudml.org/doc/89770>.

author = {Schwermer, Joachim},
journal = {Compositio Mathematica},
keywords = {Eisenstein cohomology; symplectic group; Borel-Serre compactification; symmetric space; Eisenstein series},
language = {eng},
number = {2},
pages = {233-258},
publisher = {Martinus Nijhoff Publishers},
title = {On arithmetic quotients of the Siegel upper half space of degree two},
url = {http://eudml.org/doc/89770},
volume = {58},
year = {1986},

AU - Schwermer, Joachim
TI - On arithmetic quotients of the Siegel upper half space of degree two
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 58
IS - 2
SP - 233
EP - 258
LA - eng
KW - Eisenstein cohomology; symplectic group; Borel-Serre compactification; symmetric space; Eisenstein series
UR - http://eudml.org/doc/89770
ER -


  1. [1] A. Borel: Introduction aux groupes arithmétiques. Paris: Hermann (1969). Zbl0186.33202MR244260
  2. [2] A. Borel: Stable real cohomology of arithmetic groups II. In: J. Hano et al. (ed.), Manifolds and Lie groups. Progress in Maths., Vol. 14, pp. 21-55. Boston -Basel-Stuttgart (1981). Zbl0483.57026MR642850
  3. [3] A. Borel and J-P. SERRE: Corners and arithmetic groups. Comment. Math. Helvetici48 (1973) 436-491. Zbl0274.22011MR387495
  4. [4] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups. Annals of Math. Studies94, Princeton: University Press (1980). Zbl0443.22010MR554917
  5. [5] A. Dold: Lectures on algebraic topology. Grundlehren d. math. Wiss., 200. Berlin- Heidelberg-New York: Springer (1972). Zbl0234.55001MR415602
  6. [6] S. Gelbart: Holomorphic discrete series for the real symplectic group. Inventiones math.19 (1973) 49-58. Zbl0236.22013MR320231
  7. [7] G. Harder: On the cohomology of discrete arithmetically defined groups. In: Proc. of the Int. Colloq. on Discrete Subgroups of Liegroups and appl. to Moduli (Bombay1973), pp. 129-160Oxford: University Press (1975). Zbl0317.57022MR425018
  8. [8] G. Harder: Period integrals of Eisenstein cohomology classes and special values of some L-functions. In: Ed. N. Koblitz, Number theory related to Fermat's last theorem. Progress in Maths., Vol. 26, pp. 103-142, Boston- Basel-Stuttgart (1982). Zbl0517.12008MR685293
  9. [9] G. Harder: General aspects in the theory of modular symbols. In: Seminaire de theorie des nombres. Progress in Maths., Vol. 38, pp. 73-88, Boston (1983). Zbl0526.10027MR729161
  10. [10] G. Harder: Eisenstein cohomology of arithmetic groups: The case GL2. Preprint (1984). Zbl0629.10023
  11. [11] Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math.116 (1966) 1-111. Zbl0199.20102MR219666
  12. [12] Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. Notes in Maths., 62, Berlin- Heidelberg-New York: Springer (1968). Zbl0186.04702MR232893
  13. [13] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math.74 (1961) 329-387. Zbl0134.03501MR142696
  14. [14] R.P. Langlands: Modular forms and l-adic representations. In: Modular Functions of one variable II, Lect. Notes in Maths., 349, pp. 361-500, Berlin- Heidelberg-New York: Springer (1973). Zbl0279.14007MR354617
  15. [15] R.P. Langlands: On the functional equations satisfied by Eisenstein series. Lect. Notes in Maths., 544, Berlin-Heidelberg- New York: Springer (1976). Zbl0332.10018MR579181
  16. [16] R. Lee and J. Schwermer: Cohomology of arithmetic subgroups of SL3 at infinity. Journal f. d. reine u. angew. Math.330 (1982) 100-131. Zbl0463.57014MR641814
  17. [17] R. Lee and J. Schwermer: The Lefschetz number of an involution on the space of harmonic cusp forms of SL3. Inventiones math.73 (1983) 189-239. Zbl0525.10014MR714089
  18. [18] R. Lee and R. Szczarba: On the homology and cohomology of congruence subgroups. Inventiones math.33 (1976) 15-53. Zbl0332.18015MR422498
  19. [19] J. Mennicke: Zur Theorie der Siegelschen Modulgruppe. Math. Annalen159 (1965) 115-129. Zbl0134.26502MR181676
  20. [20] M.S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for Hermitian symmetric pairs of noncompact type. Ann. of Math.93 (1970) 486-511. Zbl0257.22013MR274657
  21. [21] J. Schwermer: Sur la cohomologie des sous-groupes de congruence de SL3(Z). C.R. Acad. Sc. Paris283 (1976) 817-820. Zbl0354.57014MR430155
  22. [22] J. Schwermer: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lect. Notes in Maths., 988. Berlin-Heidelberg -New York-Tokyo: Springer (1983). Zbl0506.22015MR822473
  23. [23] J. Schwermer: Holomorphy of Eisenstein series at special points and cohomology of arithmetic subgroups of SLn(Q). Journal f.d. reine u. angew. Math.364 (1986) 193-220. Zbl0571.10032MR817646
  24. [24] J. Schwermer: Euler products and the cohomology of arithmetic quotients of the Siegel upper half space of degree two. (In preparation.) 
  25. [25] J. Schwermer: Eisensteinreihen und die Kohomologie von Kongruenzuntergruppen von SLn(Z). Bonner Math. Schriften, no. 99 (1977). Zbl0389.57017MR498403
  26. [26] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan11, Princeton: University Press (1971). Zbl0221.10029MR314766
  27. [27] D.A. Vogan, JR.: Representations of real reductive Lie groups. Progress in maths., Vol. 15, Boston-Basel-Stuttgart: Birkhäuser (1981). Zbl0469.22012MR632407
  28. [28] D.A. Vogan, JR. and G. Zuckerman: Unitary representations with non-zero cohomology. Compositio Math.53 (1984) 51-90. Zbl0692.22008MR762307

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.