# The Lefschetz Number of an Involution on the Space of Harmonic Cusp Forms of SL3.

Inventiones mathematicae (1983)

- Volume: 73, page 189-240
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topLee, R., and Schwermer, J.. "The Lefschetz Number of an Involution on the Space of Harmonic Cusp Forms of SL3.." Inventiones mathematicae 73 (1983): 189-240. <http://eudml.org/doc/143043>.

@article{Lee1983,

author = {Lee, R., Schwermer, J.},

journal = {Inventiones mathematicae},

keywords = {harmonic cuspidal differential forms; cusp cohomology; involution; torsion-free congruence subgroup of SL3; cohomology groups; Borel-Serre compactification; simple formula for Lefschetz number; Lefschetz fixed- point theorem},

pages = {189-240},

title = {The Lefschetz Number of an Involution on the Space of Harmonic Cusp Forms of SL3.},

url = {http://eudml.org/doc/143043},

volume = {73},

year = {1983},

}

TY - JOUR

AU - Lee, R.

AU - Schwermer, J.

TI - The Lefschetz Number of an Involution on the Space of Harmonic Cusp Forms of SL3.

JO - Inventiones mathematicae

PY - 1983

VL - 73

SP - 189

EP - 240

KW - harmonic cuspidal differential forms; cusp cohomology; involution; torsion-free congruence subgroup of SL3; cohomology groups; Borel-Serre compactification; simple formula for Lefschetz number; Lefschetz fixed- point theorem

UR - http://eudml.org/doc/143043

ER -

## Citations in EuDML Documents

top- Joachim Schwermer, On arithmetic quotients of the Siegel upper half space of degree two
- Jürgen Rohlfs, Birgit Speh, Representations with cohomology in the discrete spectrum of subgroups of $\mathrm{SO}(n,1)\left(Z\right)$ and Lefschetz numbers
- Jürgen Rohlfs, Birgit Speh, Automorphic representations and Lefschetz numbers

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.