Dedekind sums and power residue symbols

Robert Sczech

Compositio Mathematica (1986)

  • Volume: 59, Issue: 1, page 89-112
  • ISSN: 0010-437X

How to cite

top

Sczech, Robert. "Dedekind sums and power residue symbols." Compositio Mathematica 59.1 (1986): 89-112. <http://eudml.org/doc/89785>.

@article{Sczech1986,
author = {Sczech, Robert},
journal = {Compositio Mathematica},
keywords = {theta multiplier; elliptic function; power residue symbol; Dedekind sums; Hilbert class field},
language = {eng},
number = {1},
pages = {89-112},
publisher = {Martinus Nijhoff Publishers},
title = {Dedekind sums and power residue symbols},
url = {http://eudml.org/doc/89785},
volume = {59},
year = {1986},
}

TY - JOUR
AU - Sczech, Robert
TI - Dedekind sums and power residue symbols
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 59
IS - 1
SP - 89
EP - 112
LA - eng
KW - theta multiplier; elliptic function; power residue symbol; Dedekind sums; Hilbert class field
UR - http://eudml.org/doc/89785
ER -

References

top
  1. [1] B.J. Birch: Webers class invariants. Mathematika16 (1969) 283-294. Zbl0226.12005MR262206
  2. [2] J.W.S. Cassels: A note on the division values of p(u). Proc. Cambr. Phil. Soc.45 (1949) 167-172. Zbl0032.26103MR28358
  3. [3] R.M. Damerell: L-functions of elliptic curves with complex multiplication I, II, Acta Arithm.17 (1970) 287-301; 19 (1971) 311-317. Zbl0229.12015MR285540
  4. [4] G. Harder: On the cohomology of SL(2, O). In: I.M. Gelfand (eds.), Lie groups and their representations. Budapest (1975). Zbl0395.57028MR425019
  5. [5] E. Hecke: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. In: Mathematische Werke. Göttingen: Vandenhoeck & Ruprecht (1970). Zbl53.0345.02MR104550JFM53.0345.02
  6. [6] E. Hecke: Vorlesungen über die Theorie der algebraischen Zahlen. Chelsea, New York (1970). Zbl0208.06101MR352036
  7. [7] CH. Hermite: Sur quelques formules relatives a la transformation des fonctions elliptiques, Oeuvres I, Paris (1905). 
  8. [8] N. Krämer: Beiträge zur Arithmetik imaginärquadratischer Zahlkörper Dissertation, Bonn (1984). Zbl0564.10025MR806543
  9. [9] L. Kronecker: Die absolut kleinsten Reste reeller Grössen. MathematischeWerkeIII, p. 111-136. Chelsea, New York (1968). 
  10. [10] T. Kubota: Ein arithmetischer Satz über eine Matrizengruppe. Journal für Mathematik222 (1966) 55-57. Zbl0149.28602MR188194
  11. [11] R. Sczech: Dedekindsummen mit elliptischen Functionen. Invent. math.76 (1984) 523-551. Zbl0521.10021MR746541
  12. [12] R. Sczech: Zur Summation von L-Reihen. Bonner Mathematische Schriften141, Bonn (1982). Zbl0492.10035MR684841
  13. [13] R.G. Swan: Generators and relations for certain special linear groups.Advances in Math.6 (1971) 1-77. Zbl0221.20060MR284516
  14. [14] H. Weber: Algebra, Vol. III. Chelsea, New York. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.