Classification of 𝔻 -modules with regular singularities along normal crossings

M. G. M. Van Doorn

Compositio Mathematica (1986)

  • Volume: 60, Issue: 1, page 19-32
  • ISSN: 0010-437X

How to cite

top

Van Doorn, M. G. M.. "Classification of $\mathbb {D}$-modules with regular singularities along normal crossings." Compositio Mathematica 60.1 (1986): 19-32. <http://eudml.org/doc/89793>.

@article{VanDoorn1986,
author = {Van Doorn, M. G. M.},
journal = {Compositio Mathematica},
keywords = {classification of regular holonomic -modules},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Martinus Nijhoff Publishers},
title = {Classification of $\mathbb \{D\}$-modules with regular singularities along normal crossings},
url = {http://eudml.org/doc/89793},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Van Doorn, M. G. M.
TI - Classification of $\mathbb {D}$-modules with regular singularities along normal crossings
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 1
SP - 19
EP - 32
LA - eng
KW - classification of regular holonomic -modules
UR - http://eudml.org/doc/89793
ER -

References

top
  1. [1] Mathématique et Physique: Séminaire de l'Ecole Normale Supérieure 1979-1982. Progress in Math. Vol. 37, Birkhäuser (1983). Zbl0516.00021
  2. [2] A. Galligo, M. Granger et PH. Maisonobe: D-modules et faisceaux pervers dont le support singulier est un croisement normal. I. Annales de l'Institut Fourier (1985). A. Galligo, M. Granger, PH. Maisonobe: D-modules et faisceaux pervers dont le support singulier est un croisement normal. II. Luminy1983. To appear in Astérisque. Zbl0572.32013MR781776
  3. [3] A. Grothendieck: Sur quelques points d'Algèbre homologique. Tôhoku Math. J.9 (1957) 119-221. Zbl0118.26104MR102537
  4. [4] B. Mitchell: Theory of categories. Academic Press, New York and London (1965). Zbl0136.00604MR202787
  5. [5] A. Van Den Essen: Fuchsian modules (thesis). University of Nijmegen (1979). 
  6. [6] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Progress in Math. Vol. 2, Birkhäuser (1979). Zbl0524.32015MR553954
  7. [7] J.-E. Björk: Rings of differential operators. North-Holland Math. Library Series (1979). Zbl0499.13009MR549189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.