Quantitative rearrangement theorems

Gerhard Larcher

Compositio Mathematica (1986)

  • Volume: 60, Issue: 2, page 251-259
  • ISSN: 0010-437X

How to cite

top

Larcher, Gerhard. "Quantitative rearrangement theorems." Compositio Mathematica 60.2 (1986): 251-259. <http://eudml.org/doc/89808>.

@article{Larcher1986,
author = {Larcher, Gerhard},
journal = {Compositio Mathematica},
keywords = {rearrangement theorems; compact metric space; dispersion},
language = {eng},
number = {2},
pages = {251-259},
publisher = {Martinus Nijhoff Publishers},
title = {Quantitative rearrangement theorems},
url = {http://eudml.org/doc/89808},
volume = {60},
year = {1986},
}

TY - JOUR
AU - Larcher, Gerhard
TI - Quantitative rearrangement theorems
JO - Compositio Mathematica
PY - 1986
PB - Martinus Nijhoff Publishers
VL - 60
IS - 2
SP - 251
EP - 259
LA - eng
KW - rearrangement theorems; compact metric space; dispersion
UR - http://eudml.org/doc/89808
ER -

References

top
  1. [1] J. Descovich: Zur Theorie der Gleichverteilung auf kompakten Räumen. Sitzungsber. Österr. Akad. Wiss. Math.-naturw. Kl. Abt. II178 (1969) 263-283. Zbl0217.32702MR272737
  2. [2] E. Hlawka: Folgen auf kompakten Räumen. Abh. Math. Sem. Univ. Hamburg20 (1956) 223-241. Zbl0072.05701MR81368
  3. [3] E. Hlawka: Folgen auf kompakten Räumen II. Math. Nachr.18 (1958) 188-202. Zbl0082.04102MR99556
  4. [4] L. Kuipers and H. Niederreiter: Uniform distribution of sequences. Wiley, New York (1974). Zbl0281.10001MR419394
  5. [5] H. Niederreiter: Rearrangement theorems for sequences. In: Astérisque24-25 (1975) 243-261. Zbl0306.10035MR387225
  6. [6] H. Niederreiter: A general rearrangement theorem for sequences. Arch. Math.43 (1984) 530-534. Zbl0536.54020MR775741
  7. [7] H. Niederreiter: Quasi-Monte Carlo methods for global optimization. Proc. Fourth Pannonian Symp. on Math. Statistics. (Bad Tatzmannsdorf, 1983), Reidel, Dordrecht. Zbl0603.65043MR851058
  8. [8] W.M. Schmidt: Irregularities of distribution. Quarterly J. of Math. (Oxford) 19 (1968) 181-191. Zbl0155.37703MR228449
  9. [9] W.M. Schmidt: Irregularities of distribution VI. Compositio Math.2 (1972) 63-74. Zbl0226.10034MR311590
  10. [10] J.G. Van Der Corput: Verteilungsfunktionen I-VIII. Proc. Akad. Amsterdam38, 813-821, 1058-1066 (1935); 39, 10-19, 19-26, 149-153, 339-344, 489-494, 579-590 (1936). Zbl0014.20803JFM62.0207.03
  11. [11] J. Von Neumann: Uniformly dense sequences of numbers (Hungarian). Mat. Fiz. Lapok32 (1925) 32-40. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.