Homological characterization of boundary set complements

Philip L. Bowers

Compositio Mathematica (1987)

  • Volume: 62, Issue: 1, page 63-94
  • ISSN: 0010-437X

How to cite


Bowers, Philip L.. "Homological characterization of boundary set complements." Compositio Mathematica 62.1 (1987): 63-94. <http://eudml.org/doc/89836>.

author = {Bowers, Philip L.},
journal = {Compositio Mathematica},
keywords = {disjoint n-cells property; infinite codimension; nice ANR local compactification; -Z-set; s-manifold; discrete carriers property; disjoint disks property},
language = {eng},
number = {1},
pages = {63-94},
publisher = {Martinus Nijhoff Publishers},
title = {Homological characterization of boundary set complements},
url = {http://eudml.org/doc/89836},
volume = {62},
year = {1987},

AU - Bowers, Philip L.
TI - Homological characterization of boundary set complements
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 1
SP - 63
EP - 94
LA - eng
KW - disjoint n-cells property; infinite codimension; nice ANR local compactification; -Z-set; s-manifold; discrete carriers property; disjoint disks property
UR - http://eudml.org/doc/89836
ER -


  1. Anderson, R.D.: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc.72 (1966) 515-519. Zbl0137.09703MR190888
  2. Bestvina, M.: Stabilizing fake Hilbert spaces. Top. and Its Appl., to appear. Zbl0628.57013MR904476
  3. Bestvina, M., Bowers, P., Mogilski, J. and Walsh, J.: Characterization of Hilbert space manifolds revisited. Top. and Its Appl., 24 (1986) 53-69. Zbl0613.58003MR872478
  4. Bowers, P.L.: Applications of general position properties of dendrites to Hilbert space topology. Ph.D. dissertation, University of Tennessee (1983). 
  5. Bowers, P.L.: General position properties satisfied by finite products of dendrites. Trans. Amer. Math. Soc.288 (1985 a) 739-753. Zbl0568.54028MR776401
  6. Bowers, P.L.: Discrete cells properties in the boundary set setting. Proc. Amer. Math. Soc.93 (1985b) 735-740. Zbl0534.57009MR776212
  7. Bowers P.L.: Fake boundary sets in the Hilbert cube. Proc. Amer. Math. Soc.93 (1985c) 121-127. Zbl0524.57009MR766541
  8. Bowers, P.L.: Nonshrinkable 'cell-like' decompositions of s. Pac. J. Math.124 (1986) 257-273. Zbl0565.57011MR856162
  9. Cannon, J.W.: Shrinking cell-like decompositions of manifolds, codimension three. Ann. of Math. (2) 110 (1979) 83-112. Zbl0424.57007MR541330
  10. Curtis, D.W.: Boundary sets in the Hilbert cube. Top. and Its Appl.20 (1985) 201-221. Zbl0575.57008MR804034
  11. Daverman, R. and Walsh, J.: Čech homology characterizations of infinite dimensional manifolds. Amer. J. Math.103 (1981) 411-435. Zbl0538.57006MR618319
  12. Edwards, R.D.: Approximating certain cell-like maps by homeomorphisms. See NoticesAmer. Math. Soc.24 (1977) A649, # 751-G5. 
  13. Hu, S.T.: Theory of Retracts. Wayne State Univ. Press, Detroit, MI (1965). Zbl0145.43003MR181977
  14. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Pub. Co., Menlo Park, CA (1984). Zbl0673.55001MR755006
  15. Quinn, F.: Ends of maps and applications. Ann. of Math. (2) 110 (1979) 275-331. Zbl0394.57022MR549490
  16. Torunczyk, H.: Absolute retracts as factors of normed linear spaces. Fund. Math.86 (1974) 53-67. Zbl0318.57005MR365471
  17. Torunczyk, H.: Concerning locally homotopy negligible sets and characterization of 1 2-manifolds. Fund. Math.101 (1978) 93-110. Zbl0406.55003MR518344
  18. Torunczyk, H.: On CE-images of the Hilbert cube and characterization of Q-manifolds. Fund. Math.106 (1980) 31-40. Zbl0346.57004MR585543
  19. Torunczyk, H.: Characterizing Hilbert space topology. Fund. Math.111 (1981) 247-262. Zbl0468.57015MR611763

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.