Homological characterization of boundary set complements

Philip L. Bowers

Compositio Mathematica (1987)

  • Volume: 62, Issue: 1, page 63-94
  • ISSN: 0010-437X

How to cite

top

Bowers, Philip L.. "Homological characterization of boundary set complements." Compositio Mathematica 62.1 (1987): 63-94. <http://eudml.org/doc/89836>.

@article{Bowers1987,
author = {Bowers, Philip L.},
journal = {Compositio Mathematica},
keywords = {disjoint n-cells property; infinite codimension; nice ANR local compactification; -Z-set; s-manifold; discrete carriers property; disjoint disks property},
language = {eng},
number = {1},
pages = {63-94},
publisher = {Martinus Nijhoff Publishers},
title = {Homological characterization of boundary set complements},
url = {http://eudml.org/doc/89836},
volume = {62},
year = {1987},
}

TY - JOUR
AU - Bowers, Philip L.
TI - Homological characterization of boundary set complements
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 1
SP - 63
EP - 94
LA - eng
KW - disjoint n-cells property; infinite codimension; nice ANR local compactification; -Z-set; s-manifold; discrete carriers property; disjoint disks property
UR - http://eudml.org/doc/89836
ER -

References

top
  1. Anderson, R.D.: Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc.72 (1966) 515-519. Zbl0137.09703MR190888
  2. Bestvina, M.: Stabilizing fake Hilbert spaces. Top. and Its Appl., to appear. Zbl0628.57013MR904476
  3. Bestvina, M., Bowers, P., Mogilski, J. and Walsh, J.: Characterization of Hilbert space manifolds revisited. Top. and Its Appl., 24 (1986) 53-69. Zbl0613.58003MR872478
  4. Bowers, P.L.: Applications of general position properties of dendrites to Hilbert space topology. Ph.D. dissertation, University of Tennessee (1983). 
  5. Bowers, P.L.: General position properties satisfied by finite products of dendrites. Trans. Amer. Math. Soc.288 (1985 a) 739-753. Zbl0568.54028MR776401
  6. Bowers, P.L.: Discrete cells properties in the boundary set setting. Proc. Amer. Math. Soc.93 (1985b) 735-740. Zbl0534.57009MR776212
  7. Bowers P.L.: Fake boundary sets in the Hilbert cube. Proc. Amer. Math. Soc.93 (1985c) 121-127. Zbl0524.57009MR766541
  8. Bowers, P.L.: Nonshrinkable 'cell-like' decompositions of s. Pac. J. Math.124 (1986) 257-273. Zbl0565.57011MR856162
  9. Cannon, J.W.: Shrinking cell-like decompositions of manifolds, codimension three. Ann. of Math. (2) 110 (1979) 83-112. Zbl0424.57007MR541330
  10. Curtis, D.W.: Boundary sets in the Hilbert cube. Top. and Its Appl.20 (1985) 201-221. Zbl0575.57008MR804034
  11. Daverman, R. and Walsh, J.: Čech homology characterizations of infinite dimensional manifolds. Amer. J. Math.103 (1981) 411-435. Zbl0538.57006MR618319
  12. Edwards, R.D.: Approximating certain cell-like maps by homeomorphisms. See NoticesAmer. Math. Soc.24 (1977) A649, # 751-G5. 
  13. Hu, S.T.: Theory of Retracts. Wayne State Univ. Press, Detroit, MI (1965). Zbl0145.43003MR181977
  14. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley Pub. Co., Menlo Park, CA (1984). Zbl0673.55001MR755006
  15. Quinn, F.: Ends of maps and applications. Ann. of Math. (2) 110 (1979) 275-331. Zbl0394.57022MR549490
  16. Torunczyk, H.: Absolute retracts as factors of normed linear spaces. Fund. Math.86 (1974) 53-67. Zbl0318.57005MR365471
  17. Torunczyk, H.: Concerning locally homotopy negligible sets and characterization of 1 2-manifolds. Fund. Math.101 (1978) 93-110. Zbl0406.55003MR518344
  18. Torunczyk, H.: On CE-images of the Hilbert cube and characterization of Q-manifolds. Fund. Math.106 (1980) 31-40. Zbl0346.57004MR585543
  19. Torunczyk, H.: Characterizing Hilbert space topology. Fund. Math.111 (1981) 247-262. Zbl0468.57015MR611763

NotesEmbed ?

top

You must be logged in to post comments.