Global moduli for polarized elliptic surfaces

Wolfgang K. Seiler

Compositio Mathematica (1987)

  • Volume: 62, Issue: 2, page 187-213
  • ISSN: 0010-437X

How to cite

top

Seiler, Wolfgang K.. "Global moduli for polarized elliptic surfaces." Compositio Mathematica 62.2 (1987): 187-213. <http://eudml.org/doc/89839>.

@article{Seiler1987,
author = {Seiler, Wolfgang K.},
journal = {Compositio Mathematica},
keywords = {elliptic surfaces with a section; rational double point; Moduli schemes for polarized elliptic surfaces},
language = {eng},
number = {2},
pages = {187-213},
publisher = {Martinus Nijhoff Publishers},
title = {Global moduli for polarized elliptic surfaces},
url = {http://eudml.org/doc/89839},
volume = {62},
year = {1987},
}

TY - JOUR
AU - Seiler, Wolfgang K.
TI - Global moduli for polarized elliptic surfaces
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 2
SP - 187
EP - 213
LA - eng
KW - elliptic surfaces with a section; rational double point; Moduli schemes for polarized elliptic surfaces
UR - http://eudml.org/doc/89839
ER -

References

top
  1. EGA A. Grothendieck and J. Dieudonné: Eléments de géometrie algébrigue. IIPubl. Math. IHES8 (1961)III 2 ibid 17 (1963). 
  2. FGA A. Grothendieck: Fondements de la géométrie algébrique (extraits du Sém. Bourbaki). Sécr. Math., Paris (1962). Zbl0239.14002
  3. SGA 3 M. Demazure and A. Grothendieck: Schémas en Groupes I. Springer Lecture Notes151 (1970). Zbl0207.51401MR274458
  4. 1 A. Altman and S. Kleiman: Introduction to Grothendieck duality theory. Springer Lecture Notes146 (1970). Zbl0215.37201MR274461
  5. 2 A. Altman and S. Kleiman: Compactifying the Picard scheme II. Am. J. Math.101 (1979) 10-41. Zbl0427.14016MR527824
  6. 3 S. Anantharaman: Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Bull. Soc. Math. France, Mémoire 33 (1973) 5-79. Zbl0286.14001MR335524
  7. 4 F. Arnold: Regelflächen mit elliptischer Faserung. Diplomarbeit, Karlsruhe (1982). 
  8. 5 M. Artin: On isolated rational singularities of surfaces. Am. J. Math.88 (1966) 129-136. Zbl0142.18602MR199191
  9. 6 E. Bombieri and D. Mumford: Enriques' classification of surfaces in char p: II. in: Complex Analysis and Algebraic Geometry, pp 23-42. Cambridge University Press (1977). Zbl0348.14021MR491719
  10. 7 P. du Val: On isolated singularities of surfaces which do not affect the conditions of adjunction, Proc. Cambridge Phil. Soc.30 (1933/34) 453-491. JFM60.0599.01
  11. 8 R. Hartshorne: Residues and duality. Springer Lecture Notes20 (1966). Zbl0212.26101MR222093
  12. 9 S. Iitaka: Deformations of compact complex surfaces II. J. Math. Soc. Japan22 (1970) 247-261. Zbl0188.53401MR261639
  13. 10 A. Kas: Weierstraß normal forms and invariants of elliptic surfaces. Trans. AMS225 (1977) 251-266. Zbl0402.14014MR422285
  14. 11 T. Katsura and K. Ueno: Elliptic surfaces in positive characteristic. Math. Ann.272 (1985) 291-330. Zbl0553.14019MR799664
  15. 12 K. Kodaira: On compact analytic surfaces II, III. Ann. Math.77 (1963) 563-626; 78 (1963) 1-40. Zbl0171.19601MR184257
  16. 13 T. Matsusaka and D. Mumford: Two fundamental theorems on deformations of polarized varieties. Am. J. Math.86 (1964) 668-684 Zbl0128.15505MR171778
  17. 14 D. Mumford: Topology of normal singularities and a criterion for simplicity. Publ. Math. IHES9 (1961) 5-22. Zbl0108.16801MR153682
  18. 15 D. Mumford and J. Fogarty: Geometric invariant theory. Springer. Erg. Math.34 (1982). Zbl0504.14008MR719371
  19. 16 A. Néron: Modèles mimimaux des variétés abéliennes sur les corps locaux et globaux. Publ. Math. IHES21 (1964). Zbl0132.41403MR179172
  20. 17 A.P. Ogg: Cohomology of abelian varieties over function fields. Ann. Math.76 (1962) 185-212. Zbl0121.38002MR155824
  21. 18 M. Raynaud: Charactéristique d'Euler-Poincaré d'un faisceau et cohomologie des variétés abéliennes, Sém. Bourbaki1964/65, exp. 286. Zbl0204.54301
  22. 19 M. Raynaud: Spécialisation du foncteur de Picard. Publ. Math. IHES38 (1970) 27-76. Zbl0207.51602MR282993
  23. 20 I.R. Šafarevič: Principal homogeneous spaces defined over a function field. Trud. mat. inst. imen Steklova54 (1961) = AMS Transl.37, 85-114. Zbl0142.18401MR162806
  24. 21 I.R. Šafarevič et al.: Algebraic surfaces. Trud. mat. inst. imen Stekova75 (1965). MR215850
  25. 22 C.S. Seshadri: Quotient spaces modulo reductive algebraic groups. Ann. Math.95 (1972) 511-556. Zbl0241.14024MR309940
  26. 23 W.K. Seiler: Global moduli for elliptic surfaces with a section, Comp. Math.62 (1987) 169-185. Zbl0624.14023MR898732
  27. 24 J. Tate: Algorithm for determining the type of a singular fiber in an elliptic pencil. in: Modular functions of one variable IV. Springer Lecture Notes476 (1975) 33-52. Zbl1214.14020MR393039
  28. 25 O.N. Vvedenskiĭ: Duality on elliptic curves over local fields. Izv. Akad. Nauk SSSR Ser. Mat.28 (1964) 1091-1112; 30 (1966) 891-922 = AMS Transl.63 (1967) 195-216; 71 (1978) 135-167. Zbl0187.18801
  29. 26 O.N. Vvedenskiĭ: The Artin effect in elliptic curves I. Izv. Akad. Nauk SSSR43 (1979) = Math. USSR Izv.15 (1980) 277-288. Zbl0443.14020MR552551

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.