Yang-Mills connections over a complex surface and harmonic curvature

Mitsuhiro Itoh

Compositio Mathematica (1987)

  • Volume: 62, Issue: 2, page 95-106
  • ISSN: 0010-437X

How to cite

top

Itoh, Mitsuhiro. "Yang-Mills connections over a complex surface and harmonic curvature." Compositio Mathematica 62.2 (1987): 95-106. <http://eudml.org/doc/89840>.

@article{Itoh1987,
author = {Itoh, Mitsuhiro},
journal = {Compositio Mathematica},
keywords = {anti-self dual connection; Yang-Mills equations; harmonic connection; positive scalar curvature; Yang-Mills connection},
language = {eng},
number = {2},
pages = {95-106},
publisher = {Martinus Nijhoff Publishers},
title = {Yang-Mills connections over a complex surface and harmonic curvature},
url = {http://eudml.org/doc/89840},
volume = {62},
year = {1987},
}

TY - JOUR
AU - Itoh, Mitsuhiro
TI - Yang-Mills connections over a complex surface and harmonic curvature
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 62
IS - 2
SP - 95
EP - 106
LA - eng
KW - anti-self dual connection; Yang-Mills equations; harmonic connection; positive scalar curvature; Yang-Mills connection
UR - http://eudml.org/doc/89840
ER -

References

top
  1. 1 N. Aronszajn: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pure et Appl.35 (1957) 235-249. Zbl0084.30402MR92067
  2. 2 M.F. Atiyah, N.J. Hitchin and I.M. Singer: Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. London, Ser. A362 (1978) 425-461. Zbl0389.53011MR506229
  3. 3 J.P. Bourguignon and H.B. Lawson: Stability and isolation phenomena for Yang-Mills fields. Commun. Math. Phys.79 (1981) 189-230. Zbl0475.53060MR612248
  4. 4 S.K. Donaldson: An application of gauge theory to four dimensional topology. J. Differential Geometry18 (1983) 279-315. Zbl0507.57010MR710056
  5. 5 S.K. Donaldson: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985) 1-26. Zbl0529.53018MR765366
  6. 6 D.S. Freed and K. Uhlenbeck: Instantons and four-manifolds. New York: Springer-Verlag (1984). Zbl0559.57001MR757358
  7. 7 M. Itoh: On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces. Pub. R.I.M.S. Kyoto19 (1983) 15-32. Zbl0536.53065MR700938
  8. 8 M. Itoh: The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold. Osaka J. Math.22 (1985) 845-862. Zbl0567.53048MR815453
  9. 9 S. Kobayashi: Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A, Math. Sci.58 (1982) 158-162. Zbl0538.32021MR664562
  10. 10 S. Kobayashi, Y. Ohnita and M. Takeuchi: On instability of Yang-Mills connections. Math. Z.193 (1986) 165-189. Zbl0634.53022MR856147
  11. 11 K. Kodaira and J. Morrow: Complex manifolds. Holt, Rinehalt and Winston (1971). Zbl0325.32001MR302937
  12. 12 Min-Oo: An L2-isolation theorem for Yang-Mills fields. Comp. Math.47 (1982) 153-163. Zbl0519.53042MR677017
  13. 13 C. Shen: The gap phenomena of Yang-Mills fields over the complete manifold. Math. Zeit.189 (1982) 69-77. Zbl0471.58031MR656222
  14. 14 C. Taubes: Stability in Yang-Mills theories. Commun. Math. Phys.91 (1983) 235-263. Zbl0524.58020MR723549

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.