Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces
Compositio Mathematica (1987)
- Volume: 62, Issue: 3, page 263-282
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [AM] D. Amir and V.D. Milman: A quantitative finite-dimensional Krivine Theorem, Israel J. Math. (1985) to appear. Zbl0612.46021MR788067
- [GM1] M. Gromov and V.D. Milman: A topological application of the isoperimetric inequality. Amer. J. Math.105 (1983) 843-854. Zbl0522.53039MR708367
- [GM2] M. Gromov and V.D. Milman: Brunn Theorem and a concentration of volume phenomena for symmetric convex bodies. Geometric Aspects of Functional Analysis, Seminar Notes, Tel Aviv (1983-1984). Zbl0953.52500MR827283
- [H] H. Hadwiger: Vorlesungen Über Inhalt: Oberfläche und Isoperimetrie, Springer-Verlag (1957). Zbl0078.35703MR102775
- [P] G. Pisier: Remarques sur un Résultat non publié de B. Maurey, Séminaire d'Analyse Fonctionnelle (1980- 1981) Exp. V. Zbl0491.46017MR659306
- [S] J.J. Schäffer: Inner diameter, perimeter, and girth of spheres. Math. Ann.173 (1967) 59-82. Zbl0152.12405MR218875
- [R] V.A. Rohlin: On the fundamental ideas of measure theory. Mat. Sbornic, N.S.25 (67), (1949), 107-150 (Russian). (Amer. Math. Soc. Translation71, 55pp., (1952)).
- [BZ] Y.D. Burago and V.A. Zalgaler: Geometrical Inequalities. Leningrad, " Nauka" (1980). Zbl0436.52009