Ergodic Z 2 -extensions over rational pure point spectrum, category and homomorphisms

M. Lemańczyk

Compositio Mathematica (1987)

  • Volume: 63, Issue: 1, page 63-81
  • ISSN: 0010-437X

How to cite

top

Lemańczyk, M.. "Ergodic $Z_2$-extensions over rational pure point spectrum, category and homomorphisms." Compositio Mathematica 63.1 (1987): 63-81. <http://eudml.org/doc/89852>.

@article{Lemańczyk1987,
author = {Lemańczyk, M.},
journal = {Compositio Mathematica},
keywords = {ergodic -extensions; ergodic transformation; rational pure point spectrum; Morse sequences},
language = {eng},
number = {1},
pages = {63-81},
publisher = {Martinus Nijhoff Publishers},
title = {Ergodic $Z_2$-extensions over rational pure point spectrum, category and homomorphisms},
url = {http://eudml.org/doc/89852},
volume = {63},
year = {1987},
}

TY - JOUR
AU - Lemańczyk, M.
TI - Ergodic $Z_2$-extensions over rational pure point spectrum, category and homomorphisms
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 63
IS - 1
SP - 63
EP - 81
LA - eng
KW - ergodic -extensions; ergodic transformation; rational pure point spectrum; Morse sequences
UR - http://eudml.org/doc/89852
ER -

References

top
  1. 1 L.M. Abramov and V.A. Rokhlin: The entropy of a skew product of a measure-preserving transformations. Vest. Len. Univ.7 (1962) 5-17 (in Russian). Zbl0156.06102MR140660
  2. 2 H. Anzai: Ergodic skew product transformations on the torus. Osaka J. Math.3 (1951) 83-99. Zbl0043.11203MR40594
  3. 3 J.R. Blum and N. Friedmann: Commuting point transformations and roots. Proc. Amer. Math. Soc.7 (1966) 1370-1374. Zbl0185.29002MR204612
  4. 4 E. Coven and M. Keane: The structure of substitution minimal sets. Trans. Amer. Math. Soc.62 (1971) 89-102. Zbl0205.28303MR284995
  5. 5 H. Fürstenberg: Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation. Math. Syst. Th.1 (1967) 1-49. Zbl0146.28502MR213508
  6. 6 G.R. Goodson: Simple approximation and skew products. J. Lon. Math. Soc. (2) 7 (1973) 147-156. Zbl0267.28007MR325922
  7. 7 P.R. Halmos: Lectures in Ergodic Theory. Moscou (1959) (in Russian). Zbl0073.09302
  8. 8 H. Helson and W. Parry: Cocycles and spectra. Arkiv för Mat.16 (1978) 195-205. Zbl0401.28018MR524748
  9. 9 K. Jacobs: Ergodic theory and combinatorics. Contemp. Math.26 (1984) 171-187. Zbl0548.28006MR737399
  10. 10 R. Jones and W. Parry: Compact abelian group extensions of dynamical systems II. Comp. Math.25 (1972) 135-147. Zbl0243.54039MR338318
  11. 11 A.B. Katok and A.M. Stepin: Approximation in ergodic theory. Usp. Mat. Nauk22, 5 (137) (1967) 81-105 (in Russian). Zbl0172.07202MR219697
  12. 12 M. Keane: Generalized Morse sequences. Z. Wahr. Verw. Geb.10 (1968) 335-353. Zbl0162.07201MR239047
  13. 13 A.G. Kushnirenko: On metric invariant of entropy type. Usp. Mat. Nauk22, 5 (137) (1967) 53-61 (in Russian). Zbl0169.46101
  14. 14 J. Kwiatkowski: Isomorphism of regular Morse dynamical systems. Studia Math.62 (1982) 59-89. Zbl0525.28018MR665892
  15. 15 M. Lemańczyk: The rank of regular Morse dynamical systems. Z. Wahr. Verw. Geb.70 (1985) 33-48. Zbl0549.28026MR795787
  16. 16 M. Lemańczyk: Ergodic properties of Morse sequences. Diss. (1985). Zbl0639.28011
  17. 17 M. Lemańczyk and M.K. Mentzen: Generalized Morse sequences on n-symbols and m-symbols are not isomorphic. Bull. Pol. Ac. Sc.33 no 5-6 (1985) 239-245. Zbl0631.28011MR816371
  18. 18 J. Mathew and M.G. Nadkarni: A measure-preserving transformation whose spectrum has Lebesgue component of multiplicity two. Bull. Lon. Math. Soc.16 no 4 (1984) 402-406. Zbl0515.28010MR749448
  19. 19 D. Newton: On canonical factors of ergodic dynamical systems. J. Lon. Math. Soc. (2) 19 (1979) 129-136. Zbl0425.28012MR527744
  20. 20 K. Parczyk: Strong topology on the automorphism group of the Lebesgue space. Ann. Soc. Math. Pol. Comm. Math.23 (1983) 91-95. Zbl0595.28023MR709176
  21. 21 W. Parry: Compact abelian group extensions of discrete dynamical systems. Z. Wahr. Verw. Geb.13 (1969) 95-113. Zbl0184.26901MR260976
  22. 22 E.S. Pitskel ': Some properties of A-entropy. Mat. Zam.5 (1969) 327-334 (in Russian). 
  23. 23 V.A. Rokhlin: Unitary rings. Dokl. AN SSSR5LIX no 4 (1948) 643-646 (in Russian). Zbl0030.39801
  24. 24 T. Rojek: On a metric isomorphism of Morse dynamical system. Studia Math. (to appear). Zbl0657.28011MR877081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.