Topologically -determined map germs are topologically cone-like

Takashi Nishimura

Compositio Mathematica (1987)

  • Volume: 64, Issue: 1, page 117-129
  • ISSN: 0010-437X

How to cite

top

Nishimura, Takashi. "Topologically $\infty $-determined map germs are topologically cone-like." Compositio Mathematica 64.1 (1987): 117-129. <http://eudml.org/doc/89869>.

@article{Nishimura1987,
author = {Nishimura, Takashi},
journal = {Compositio Mathematica},
keywords = {structural stability; differential map germ; infinite jet},
language = {eng},
number = {1},
pages = {117-129},
publisher = {Martinus Nijhoff Publishers},
title = {Topologically $\infty $-determined map germs are topologically cone-like},
url = {http://eudml.org/doc/89869},
volume = {64},
year = {1987},
}

TY - JOUR
AU - Nishimura, Takashi
TI - Topologically $\infty $-determined map germs are topologically cone-like
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 1
SP - 117
EP - 129
LA - eng
KW - structural stability; differential map germ; infinite jet
UR - http://eudml.org/doc/89869
ER -

References

top
  1. 1 T. Fukuda, Types topologiques des polynomes, Publ. Math. I.H.E.S. 46 (1976) 87-106. Zbl0341.57019MR494152
  2. 2 T. Fukuda, Local topological properties of differentiable mappings. I, Invent. Math.65 (1981) 227-250; II, Tokyo Journal of Math.8 (1985) 501-520. Zbl0599.58010MR641129
  3. 3 C.G. Gibson et al., Topological stabilities of smooth mapping, Springer Lecture Notes in Math. 552 (1976) 128-176. 
  4. 4 Le Dung Tráng and B. Teissier, Report on the problem session, Singularities. Proceedings of Symposia in Pure Math.40, part 2 (1983) 105-115. Zbl0514.14001MR713239
  5. 5 J. Mather, How to stratify mappings and jet spaces, Springer Lecture Notes in Math. 535 (1976) 128-176. Zbl0398.58008MR455018
  6. 6 J. Mather, Stability of C∞ mappings I, Annals of Math.87 (1968) 89-104; II, Annals of Math.89 (1969) 254-291; III, Publ. Math. I.H.E.S. 35 (1969) 127-156; IV, Publ. Math. I.H.E.S. 37 (1970) 223-248; V, Advances in Math.4 (1970) 301-335; VI, Springer Lecture Notes in Math. 192 (1971) 207-253. 
  7. 7 R. Thom, Local topological properties of differentiable mappings, In: Colloquium on Differential Analysis, Oxford University Press (1964) pp. 191-202. Zbl0151.32002MR195102
  8. 8 L.C. Wilson, Infinitely determined mapgerms, Canadian Journal of Math.33 (1981) 671-684. Zbl0476.58005MR627650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.