Topologically -determined map germs are topologically cone-like
Compositio Mathematica (1987)
- Volume: 64, Issue: 1, page 117-129
- ISSN: 0010-437X
Access Full Article
topHow to cite
topNishimura, Takashi. "Topologically $\infty $-determined map germs are topologically cone-like." Compositio Mathematica 64.1 (1987): 117-129. <http://eudml.org/doc/89869>.
@article{Nishimura1987,
author = {Nishimura, Takashi},
journal = {Compositio Mathematica},
keywords = {structural stability; differential map germ; infinite jet},
language = {eng},
number = {1},
pages = {117-129},
publisher = {Martinus Nijhoff Publishers},
title = {Topologically $\infty $-determined map germs are topologically cone-like},
url = {http://eudml.org/doc/89869},
volume = {64},
year = {1987},
}
TY - JOUR
AU - Nishimura, Takashi
TI - Topologically $\infty $-determined map germs are topologically cone-like
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 1
SP - 117
EP - 129
LA - eng
KW - structural stability; differential map germ; infinite jet
UR - http://eudml.org/doc/89869
ER -
References
top- 1 T. Fukuda, Types topologiques des polynomes, Publ. Math. I.H.E.S. 46 (1976) 87-106. Zbl0341.57019MR494152
- 2 T. Fukuda, Local topological properties of differentiable mappings. I, Invent. Math.65 (1981) 227-250; II, Tokyo Journal of Math.8 (1985) 501-520. Zbl0599.58010MR641129
- 3 C.G. Gibson et al., Topological stabilities of smooth mapping, Springer Lecture Notes in Math. 552 (1976) 128-176.
- 4 Le Dung Tráng and B. Teissier, Report on the problem session, Singularities. Proceedings of Symposia in Pure Math.40, part 2 (1983) 105-115. Zbl0514.14001MR713239
- 5 J. Mather, How to stratify mappings and jet spaces, Springer Lecture Notes in Math. 535 (1976) 128-176. Zbl0398.58008MR455018
- 6 J. Mather, Stability of C∞ mappings I, Annals of Math.87 (1968) 89-104; II, Annals of Math.89 (1969) 254-291; III, Publ. Math. I.H.E.S. 35 (1969) 127-156; IV, Publ. Math. I.H.E.S. 37 (1970) 223-248; V, Advances in Math.4 (1970) 301-335; VI, Springer Lecture Notes in Math. 192 (1971) 207-253.
- 7 R. Thom, Local topological properties of differentiable mappings, In: Colloquium on Differential Analysis, Oxford University Press (1964) pp. 191-202. Zbl0151.32002MR195102
- 8 L.C. Wilson, Infinitely determined mapgerms, Canadian Journal of Math.33 (1981) 671-684. Zbl0476.58005MR627650
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.