A characterization of osculating maps
We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map is generically (for ) transverse to a submanifold . We apply this to study transversality properties of a restriction of a fixed map to the preimage of a submanifold in terms of transversality properties of the original map . Our main result is that for a reasonable class of submanifolds and a generic map the restriction is also generic. We also present an example of where the...
We shall prove the following Theorem. Let Fs and Fu be two continuous transverse foliations with uniformly smooth leaves, of some manifold. If f is uniformly smooth along the leaves of Fs and Fu, then f is smooth.
We prove that the standard action of the mapping class group of a surface of sufficiently large genus on the unit tangent bundle is not homotopic to any smooth action.
According to Ando's theorem, the oriented bordism group of fold maps of n-manifolds into n-space is isomorphic to the stable n-stem. Among such fold maps we define two geometric operations corresponding to the composition and to the Toda bracket in the stable stem through Ando's isomorphism. By using these operations we explicitly construct several fold maps with convenient properties, including a fold map which represents the generator of the stable 6-stem.
Nous donnons des conditions nécessaires et suffisantes pour qu’une variété de dimension 3 se réalise comme bord d’une famille dégénérée de courbes complexes, et pour qu’un entrelacs dans une 3-variété se réalise comme bord d’un germe de fonction analytique en un point d’une surface complexe normale. Ces résultats s’appuient sur une étude des objets topologiques fournis par de telles fonctions holomorphes : soit une variété de Waldhausen et soit une union finie, éventuellement vide, de fibres...