Automorphism groups of the modular curves X 0 ( N )

M. A. Kenku; Fumiyuki Momose

Compositio Mathematica (1988)

  • Volume: 65, Issue: 1, page 51-80
  • ISSN: 0010-437X

How to cite

top

Kenku, M. A., and Momose, Fumiyuki. "Automorphism groups of the modular curves $X_0(N)$." Compositio Mathematica 65.1 (1988): 51-80. <http://eudml.org/doc/89883>.

@article{Kenku1988,
author = {Kenku, M. A., Momose, Fumiyuki},
journal = {Compositio Mathematica},
keywords = {automorphism group of the modular curve},
language = {eng},
number = {1},
pages = {51-80},
publisher = {Kluwer Academic Publishers},
title = {Automorphism groups of the modular curves $X_0(N)$},
url = {http://eudml.org/doc/89883},
volume = {65},
year = {1988},
}

TY - JOUR
AU - Kenku, M. A.
AU - Momose, Fumiyuki
TI - Automorphism groups of the modular curves $X_0(N)$
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 1
SP - 51
EP - 80
LA - eng
KW - automorphism group of the modular curve
UR - http://eudml.org/doc/89883
ER -

References

top
  1. 1 A.O.L. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann.1985 (1970) 134-160. Zbl0177.34901
  2. 2 Z.I. Borevich and I.R. Safarevich, Number Theory, Academic Press, New York and London (1966). Zbl0145.04902MR195803
  3. 3 P. Deligne, Formes modulaires et représentation l-adiques, Sém. Bourbaki 1968/69, exposé n°355, Lecture Notes in Math. 189 (1971). Zbl0206.49901
  4. 4 P. Deligne and M. Rapoport, Schémas de modules des courbes elliptiques, Vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp1972, Lecture Notes in Math. 349. Zbl0281.14010MR337993
  5. 5 K. Doi and M. Yamauchi, On the Hecke operators for Γ0(N) and class fields over quadratic fields, J. Math. Soc. Japan25 (1973) 629-643. Zbl0259.10024
  6. 6 R. Fricke, Die Elliptischen Functionen und ihre Anwendungen, Leipzig-Berlin, Teubner1922. Zbl48.0432.01
  7. 7 M.A. Kenku, The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philos. Soc.85 (1979) 21-23. Zbl0392.14011MR510395
  8. 8 M.A. Kenku, The modular curves X0(65) and X0(91) and rational isogeny, Math. Proc. Cambridge Philos.87 (1980) 15-20. Zbl0479.14014MR549292
  9. 9 M.A. Kenku, The modular curve X0(169) and rational isogeny, J. London Math. Soc. (2), 22 (1981) 239-244. Zbl0437.14022MR588271
  10. 10 M.A. Kenku, On the modular curves X0(125), X1(25) and X1(49), J. London Math. Soc. (2), 23 (1981) 415-427. Zbl0425.14006MR616546
  11. 11 M.A. Kenku, Rational torsion points on elliptic curves defined over quadratic fields, to appear. Zbl0558.14020MR780869
  12. 12 S. Lang, Elliptic Functions. Addison-Wesley, Reading Math. Zbl0316.14001MR409362
  13. 13 Y. Manin, Parabolic points and zeta functions of modular forms, Math. USSR-Izvestija, Vol. 6, No. 1 (1972) 19-64. Zbl0248.14010
  14. 14 B. Mazur, Modular curves and the Eisenstein ideals, Publ. Math. I.H.E.S. 47 (1977). Zbl0394.14008
  15. 15 B. Mazur, Rational isogenies of prime degree, Inv. Math.44 (1978) 129-162. Zbl0386.14009MR482230
  16. 16 B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Inv. Math.25 (1974) 1-61. Zbl0281.14016MR354674
  17. 17 J.F. Mestre, Points rationnels de la courbe modulaire X0(169), Ann. Inst. Fourier, Grenoble30, 2 (1980) 17-27. Zbl0432.14017MR584269
  18. 18 F. Momose, On the l-adic representations attached to modular forms, J. Facult. Sci. Univ. Tokyo, Vol. 28, No. 1 (1981) 89-109. Zbl0482.10023MR617867
  19. 19 F. Momose, Rational points on the modular curves Xsplit(p), Comp. Math.52 (1984) 115-137. Zbl0574.14023MR742701
  20. 20 F. Momose, Rational points on the modular curves X0(p), J. Facult. Sci. Univ. Tokyo, 33 (1986) 585-631. Zbl0621.14018MR866046
  21. 21 F Momose, p-torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. Vol.96 (1984), 139-165. Zbl0578.14021MR771075
  22. 22 A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France102 (1974) 449-462. Zbl0314.10018MR364259
  23. 23 A. Ogg, Über die Automorphismengruppe von X0(N), Math. Ann.228 (1977) 279-292. Zbl0336.14002MR562500
  24. 24 F. Oort and J. Tate, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup. série 4, 3 (1970), 1-21. Zbl0195.50801MR265368
  25. 25 M. Raynaud, Spécialisation du fonctor de Picard, Publ. Math. I.H.E.S. 38 (1970) 27-76. Zbl0207.51602
  26. 26 M. Raynaud, Schémas en groupes de type (p, ... , p) Bull. Soc. Math. France102 (1974) 241-280. Zbl0325.14020MR419467
  27. 27 K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math.101 (1975) 555-562. Zbl0305.14016MR371903
  28. 28 K.A. Ribet, On l-adic representations attached to modular forms, Inv. Math.28 (1975) 245-275. Zbl0302.10027MR419358
  29. 29 K.A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann.253 (1980) 43-62. Zbl0421.14008MR594532
  30. 30 J.B. Rossor and L. Schoenfeld, Approximate formula for some functions of prime numbers, Illinois J. Math. Vol.6 (1962) 64-94. Zbl0122.05001
  31. 31 J.P. Serre, Propriétés galoissiennes des points d'ordre fini des courbes elliptiques, Inv. Math.15 (1972) 259-331. Zbl0235.14012MR387283
  32. 32 J.P. Serre and J. Tate, Good reduction of abelian varieties, Ann. Math.88 (1968) 429-517. Zbl0172.46101MR236190
  33. 33 G. Shimura, Introduction to the Arithmetic theory of Automorphic functions, Publ. Math. Soc. No. 11, Tokyo -Princeton1970. Zbl0221.10029MR314766
  34. 34 G. Shimura, On elliptic curves with complex multiplication as factors of the jacobians of modular function fields, Nagoya Math. J43 (1971) 199-208. Zbl0225.14015MR296050
  35. 35 G. Shimura, On the factors of jacobian variety of a modular function field, J. Math. Soc. Japan25 (1973) 525-544. Zbl0266.14017MR318162
  36. 36 Modular functions of one variable IV, Lecture Notes in Math. 476. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.