Points rationnels de la courbe modulaire X 0 ( 169 )

Jean-François Mestre

Annales de l'institut Fourier (1980)

  • Volume: 30, Issue: 2, page 17-27
  • ISSN: 0373-0956

Abstract

top
We prove that the only rational point of the curve X 0 ( 169 ) are the cusps.Consequently, there does not exist any elliptic curve defined over Q which possesses a rational cyclic subgroup of order 13 2 .

How to cite

top

Mestre, Jean-François. "Points rationnels de la courbe modulaire $X_0(169)$." Annales de l'institut Fourier 30.2 (1980): 17-27. <http://eudml.org/doc/74447>.

@article{Mestre1980,
abstract = {On démontre que les seuls points rationnels sur $\{\bf Q\}$ de la courbe $X_0(169)$ sont les pointes.En conséquence, il n’existe pas de courbe elliptique définie sur $\{\bf Q\}$ possédant un sous-groupe cyclique rationnel d’ordre $13^2$.},
author = {Mestre, Jean-François},
journal = {Annales de l'institut Fourier},
keywords = {modular curve; X0(169); rational point; cusp},
language = {fre},
number = {2},
pages = {17-27},
publisher = {Association des Annales de l'Institut Fourier},
title = {Points rationnels de la courbe modulaire $X_0(169)$},
url = {http://eudml.org/doc/74447},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Mestre, Jean-François
TI - Points rationnels de la courbe modulaire $X_0(169)$
JO - Annales de l'institut Fourier
PY - 1980
PB - Association des Annales de l'Institut Fourier
VL - 30
IS - 2
SP - 17
EP - 27
AB - On démontre que les seuls points rationnels sur ${\bf Q}$ de la courbe $X_0(169)$ sont les pointes.En conséquence, il n’existe pas de courbe elliptique définie sur ${\bf Q}$ possédant un sous-groupe cyclique rationnel d’ordre $13^2$.
LA - fre
KW - modular curve; X0(169); rational point; cusp
UR - http://eudml.org/doc/74447
ER -

References

top
  1. [1] V. G. BERKOVIČ, The rational points on the Jacobian of modular curves, Mat. Sbornik, 101 (143) (1976) ; traduction anglaise, Math. U.S.S.R. Sbornik, 30, 4 (1976), 478-500. Zbl0385.14007
  2. [2] P. DELIGNE, M. RAPOPORT, Schémas de modules des courbes elliptiques, vol. II of the Proceedings of the International Summer School on modular functions, Antwerp (1972), Lecture Notes in Mathematics 349, Berlin-Heidelberg-New York, Springer, 1973. Zbl0281.14010
  3. [3] R. FRICKE, Die elliptischen Funktionen und ihre Anwendungen, II, Leipzig-Berlin, Teubner, 1922. JFM48.0432.01
  4. [4] M. A. KENKU, The modular curve X0(39) and rational isogeny, Math. Proc. Cambridge Philo. Soc., 85, (1979), 21-23. Zbl0392.14011MR80g:14023
  5. [5] Y. MANIN, Parabolic points and zeta functions of modular forms (Russian), Isv. Acad. Nauk., (1972), 19-66. Zbl0243.14008
  6. [6] B. MAZUR, Rational isogenies of prime degree, Inventiones Mathematicae, 44 (1978), 129-163. Zbl0386.14009MR80h:14022
  7. [7] A. OGG, Rational points on certain elliptic modular curves, Proc. Symp. Pure Math., A.M.S., Providence, 24 (1973), 221-231. Zbl0273.14008MR49 #2743
  8. [8] F. OORT, J. TATE, Group schemes of prime order, Ann. Scient. Ec. Norm. Sup., série 4,3 (1970), 1-21. Zbl0195.50801MR42 #278

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.