An analytic function and iterated integrals
Compositio Mathematica (1988)
- Volume: 65, Issue: 2, page 209-221
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHarris, Bruno. "An analytic function and iterated integrals." Compositio Mathematica 65.2 (1988): 209-221. <http://eudml.org/doc/89890>.
@article{Harris1988,
author = {Harris, Bruno},
journal = {Compositio Mathematica},
keywords = {meromorphic function; cusp forms; functional equation; Mellin transforms; Rankin type convolution; generalized period; Jacobian variety},
language = {eng},
number = {2},
pages = {209-221},
publisher = {Kluwer Academic Publishers},
title = {An analytic function and iterated integrals},
url = {http://eudml.org/doc/89890},
volume = {65},
year = {1988},
}
TY - JOUR
AU - Harris, Bruno
TI - An analytic function and iterated integrals
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 2
SP - 209
EP - 221
LA - eng
KW - meromorphic function; cusp forms; functional equation; Mellin transforms; Rankin type convolution; generalized period; Jacobian variety
UR - http://eudml.org/doc/89890
ER -
References
top- 1. B.H. Gross and D.B. Zagier, Heegner points and derivatives of L-series, Inventiones Math.84, (1986) 225-320. Zbl0608.14019MR833192
- 2. B. Harris, Harmonic volumes, Acta Mathematica150 (1983) 91-123. Zbl0527.30032MR697609
- 3. B. Harris, Homological versus algebraic equivalence in a Jacobian, Proc. Nat. Acad. Sci. USA80 (1983) 1157-1158. Zbl0523.14006MR689846
- 4. J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Séminaire Bourbaki 1983-84, no. 631, Astérisque, pp. 121-122 (1985). Zbl0551.12003MR768967
- 5. G. Shimura, Arithmetic Theory of Automorphic Functions (1971). Zbl0221.10029
- 6. G. Shimura, The special values of the zeta functions associated with cusp forms, Communications on Pure and Applied Mathematics29 (1976) 783-804. Zbl0348.10015MR434962
- 7. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, (2nd edition) Oxford (1948). Zbl0017.40404JFM63.0367.05
- 8. M. Tretkoff, in Contemporary Mathematics Vol. 33, pp. 493-501; American Mathematical Society (1984).
- 9. B. Schoeneberg, Elliptic Modular Functions, Berlin (1974). Zbl0285.10016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.