Limiting subcontinua and Whitney maps of tree-like continua

Hisao Kato

Compositio Mathematica (1988)

  • Volume: 66, Issue: 1, page 5-14
  • ISSN: 0010-437X

How to cite

top

Kato, Hisao. "Limiting subcontinua and Whitney maps of tree-like continua." Compositio Mathematica 66.1 (1988): 5-14. <http://eudml.org/doc/89900>.

@article{Kato1988,
author = {Kato, Hisao},
journal = {Compositio Mathematica},
keywords = {tree-like continuum; Whitney map; absolute retract; Peano continuum; limiting subcontinuum},
language = {eng},
number = {1},
pages = {5-14},
publisher = {Kluwer Academic Publishers},
title = {Limiting subcontinua and Whitney maps of tree-like continua},
url = {http://eudml.org/doc/89900},
volume = {66},
year = {1988},
}

TY - JOUR
AU - Kato, Hisao
TI - Limiting subcontinua and Whitney maps of tree-like continua
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 66
IS - 1
SP - 5
EP - 14
LA - eng
KW - tree-like continuum; Whitney map; absolute retract; Peano continuum; limiting subcontinuum
UR - http://eudml.org/doc/89900
ER -

References

top
  1. 1 K. Borsuk: Theory of Shape, Monografie Mathematyczne59, Warszawa (1975). Zbl0317.55006MR418088
  2. 2 K. Borsuk: Theory of Retracts, Monografie Mathematyczne44, Warszawa (1967). Zbl0153.52905MR216473
  3. 3 S.T. Hu: Theory of Retracts, Wayne State Univ. Press, Detroit (1965). Zbl0145.43003MR181977
  4. 4 H. Kato: Concerning hyperspaces of certain Peano continua and strong regularity of Whitney maps, Pacific J. Math.119 (1985) 159-167. Zbl0524.55015MR797021
  5. 5 H. Kato: Shape properties of Whitney maps for hyperspaces, Trans. Amer. Math. Soc.297 (1986) 529-546. Zbl0607.54014MR854083
  6. 6 H. Kato: Whitney continua of curves, Trans. Amer. Math. Soc.300 (1987) 367-381. Zbl0621.54006MR871681
  7. 7 H. Kato: Whitney continua of graphs admit all homotopy types of compact connected ANRs, Fund. Math. (to appear). Zbl0652.55013MR962537
  8. 8 H. Kato: Various types of Whitney maps on n-dimensional compact connected polyhedra (n ≽ 2), Topology Appl. (to appear). Zbl0631.54004
  9. 9 H. Kato: Movability and homotopy, homology pro-groups of Whitney continua, J. Math. Soc. Japan39 (1987) 435-446. Zbl0608.54003MR900978
  10. 10 H. Kato: On admissible Whitney maps, Colloq. Math. (to appear). Zbl0703.54009MR991218
  11. 11 H. Kato: Shape equivalences of Whitney continua of curves, Canad. J. Math. (to appear). Zbl0628.54010MR928220
  12. 12 H. Kato: On local 1-connectedness of Whitney continua, Fund. Math. (to appear). Zbl0675.54032MR978718
  13. 13 J.L. Kelley: Hyperspaces of a continuum, Trans. Amer. Math. Soc.52 (1942) 22-36. Zbl0061.40107MR6505
  14. 14 J. Krasinkiewicz: On the hyperspaces of snake-like and circle-like continua, Fund. Math.83 (1974) 155-164. Zbl0271.54024MR418058
  15. 15 J. Krasinkiewicz and S.B. Nadler, Jr.: Whitney properties, Fund. Math.98 (1978) 165-180. Zbl0376.54013MR467691
  16. 16 J. Leray: Theorie des points fixes: indice total et nombre de Lefschetz, Bull. Soc. Math. France87 (1959) 221-233. Zbl0093.36702MR143202
  17. 17 M. Lynch: Whitney properties for 1-dimensional continua, Bull. Acad. Polon. Sci. (to appear). Zbl0637.54028MR939010
  18. 18 S.B. Nadler, Jr.: Hyperspaces of sets, Pure and Appl. Math. Dekker, New York (1978). Zbl0432.54007MR500811
  19. 19 A. Petrus: Contractibility of Whitney continua in C(X), Gen. Topology Appl.9 (1978) 275-288. Zbl0405.54006MR510909
  20. 20 J.T. Rogers, Jr.: Whitney continua in the hyperspace C(X), Pacific J. Math.58 (1975) 569-584. Zbl0322.54016MR383372
  21. 21 H. Whitney: Regular families of curves I, Proc. Nat. Acad. Sci. U.S.A.18 (1932) 275-278. Zbl0004.07503JFM58.0633.02
  22. 22 M. Wojdyslawski: Rétractes absolus et hyperespaces des continus, Fund. Math.32 (1939) 184-192. Zbl0021.36001JFM65.0880.03

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.