The Abel transform and shift operators

R. J. Beerends

Compositio Mathematica (1988)

  • Volume: 66, Issue: 2, page 145-197
  • ISSN: 0010-437X

How to cite

top

Beerends, R. J.. "The Abel transform and shift operators." Compositio Mathematica 66.2 (1988): 145-197. <http://eudml.org/doc/89902>.

@article{Beerends1988,
author = {Beerends, R. J.},
journal = {Compositio Mathematica},
keywords = {noncompact connected real semisimple Lie group; Lie algebra; Iwasawa decomposition; restricted roots; Weyl group; spaces of - functions with compact support; spherical Fourier transform; inversion of the Abel transform; differential operators; root systems; Laplace- Beltrami operator},
language = {eng},
number = {2},
pages = {145-197},
publisher = {Kluwer Academic Publishers},
title = {The Abel transform and shift operators},
url = {http://eudml.org/doc/89902},
volume = {66},
year = {1988},
}

TY - JOUR
AU - Beerends, R. J.
TI - The Abel transform and shift operators
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 66
IS - 2
SP - 145
EP - 197
LA - eng
KW - noncompact connected real semisimple Lie group; Lie algebra; Iwasawa decomposition; restricted roots; Weyl group; spaces of - functions with compact support; spherical Fourier transform; inversion of the Abel transform; differential operators; root systems; Laplace- Beltrami operator
UR - http://eudml.org/doc/89902
ER -

References

top
  1. 1 K. Aomoto: Sur les transformations d'horisphère et les équations intégrales qui s'y rattachent, J. Fac. Sci. Univ. Tokyo14 (1967) 1-23. Zbl0177.41801MR222218
  2. 2 R.J. Beerends: On the Abel transform and its inversion. Thesis, University of Leiden (1987). Zbl0597.43006MR935586
  3. 3 N. Bourbaki: Eléments de Mathématique, Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris (1968). Zbl0483.22001MR453824
  4. 4 J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan: Spectra of compact locally symmetric manifolds of negative curvature, Invent. Math.52 (1979) 27-93. Zbl0434.58019MR532745
  5. 5 R. Gangolli: Asymptotic behaviour of spectra of compact quotients of certain symmetric spaces, Acta Math.121 (1968) 151-192. Zbl0169.46004MR239000
  6. 6 A. Hba: Sur l'inversion de la transformation d'Abel, preprint 92, Univ. de Nice (1986). 
  7. 7 G.J. Heckman and E.M. Opdam: Root systems and hypergeometric functions I, Comp. Math.64 (1987) 329-352. Zbl0656.17006MR918416
  8. 8 S. Helgason: Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York (1978). Zbl0451.53038MR514561
  9. 9 S. Helgason: Groups and geometric analysis, Academic Press, Orlando (1984). Zbl0543.58001MR754767
  10. 10 T.H. Koornwinder: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators I-IV, Indag. Math.36 (1974) 48-66 and 358-381. MR340673
  11. 11 T.H. Koornwinder: A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat.13 (1975) 145-159. Zbl0303.42022MR374832
  12. 12 N. Lohoué and T. Rychener: Die Resolvente von Δ auf symmetrischen Räumen vom nichtkompakten Typ, Comment. Math. Helv.57 (1982) 445-468. Zbl0505.53022
  13. 13 C. Meaney: The inverse Abel transform for SU(p, q), Ark. Mat.24 (1968) 131-140. Zbl0608.43008MR852831
  14. 14 E.M. Opdam: Root systems and hypergeometric functions III. To appear in Comp. Math. (1988). Zbl0669.33007MR949270
  15. 15 F. Rouvière: Sur la transformation d'Abel des groupes de Lie semisimples de rang un, Ann. Scuola Norm. Sup. Pisa10 (1983) 263-290. Zbl0527.43006MR728437
  16. 16 J. Sekiguchi: Zonal spherical functions on some symmetric spaces, Publ. RIMS Kyoto Univ.12 Suppl. (1977) 455-459. Zbl0383.43005MR461040
  17. 17 I. Sprinkhuizen-Kuyper: Orthogonal polynomials in two variables; A further analysis of the polynomials orthogonal on a region bounded by two lines and a parabola, SIAM J. Math. Anal.7 (1976) 501-518. Zbl0332.33011MR415187
  18. 18 L. Vretare: Formulas for elementary spherical functions and generalized Jacobi polynomials, SIAM J. Math. Anal.15 (1984) 805-833. Zbl0549.43006MR747438
  19. 19 B.L. van der Waerden:Algebra I, 8. aufl., Springer, New York (1971). 
  20. 20 A. Hba: Analyse harmonique sur (SL(3, H)), C.R. Acad. Sci. Paris Sér. I305 (1987) 77-80. Zbl0616.43011MR901139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.