Page 1 Next

Displaying 1 – 20 of 98

Showing per page

A Paley-Wiener theorem for step two nilpotent Lie groups.

Sundaram Thangavelu (1994)

Revista Matemática Iberoamericana

It is an interesting open problem to establish Paley-Wiener theorems for general nilpotent Lie groups. The aim of this paper is to prove one such theorem for step two nilpotent Lie groups which is analogous to the Paley-Wiener theorem for the Heisenberg group proved in [4].

A Paley-Wiener theorem on NA harmonic spaces

Francesca Astengo, Bianca di Blasio (1999)

Colloquium Mathematicae

Let N be an H-type group and consider its one-dimensional solvable extension NA, equipped with a suitable left-invariant Riemannian metric. We prove a Paley-Wiener theorem for nonradial functions on NA supported in a set whose boundary is a horocycle of the form Na, a ∈ A.

Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey

Nico Spronk (2010)

Banach Center Publications

Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L - 1 ( G ) and M(G), in a sense which generalizes the Pontryagin duality theorem on abelian groups. We wish to consider the amenability properties of A(G) and B(G) and compare them to such properties for L - 1 ( G ) and M(G). For us, “amenability properties” refers to amenability, weak amenability, and biflatness, as well as some properties which...

An analogue of Hardy's theorem for the Heisenberg group

S. Thangavelu (2001)

Colloquium Mathematicae

We observe that the classical theorem of Hardy on Fourier transform pairs can be reformulated in terms of the heat kernel associated with the Laplacian on the Euclidean space. This leads to an interesting version of Hardy's theorem for the sublaplacian on the Heisenberg group. We also consider certain Rockland operators on the Heisenberg group and Schrödinger operators on ℝⁿ related to them.

Currently displaying 1 – 20 of 98

Page 1 Next