Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections

Alan Michael Nadel

Compositio Mathematica (1988)

  • Volume: 67, Issue: 2, page 121-128
  • ISSN: 0010-437X

How to cite

top

Nadel, Alan Michael. "Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections." Compositio Mathematica 67.2 (1988): 121-128. <http://eudml.org/doc/89912>.

@article{Nadel1988,
author = {Nadel, Alan Michael},
journal = {Compositio Mathematica},
keywords = {moduli space of flat Hermitian-Yang-Mills connections over compact Kähler manifolds; moduli space of stable holomorphic vector bundles; deformation; Kodaira dimension},
language = {eng},
number = {2},
pages = {121-128},
publisher = {Kluwer Academic Publishers},
title = {Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections},
url = {http://eudml.org/doc/89912},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Nadel, Alan Michael
TI - Singularities and Kodaira dimension of the moduli space of flat Hermitian-Yang-Mills connections
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 67
IS - 2
SP - 121
EP - 128
LA - eng
KW - moduli space of flat Hermitian-Yang-Mills connections over compact Kähler manifolds; moduli space of stable holomorphic vector bundles; deformation; Kodaira dimension
UR - http://eudml.org/doc/89912
ER -

References

top
  1. [C-G] M. Cornalba and P.A. Griffiths: Analytic cycles and vector bundles on non-compact algebraic varieties, Inventiones Math.28 (1975) 1-106. Zbl0293.32026MR367263
  2. [Don] S.K. Donaldson: Infinite determinants, stable bundles, and curvature, preprint. Zbl0627.53052MR885784
  3. [F-K] O. Forster and K. Knorr: Über die Deformation von Vektorraumbündeln auf kompakten komplexen Räumen, Math. Ann.209 (1974) 291-346. Zbl0272.32004MR374495
  4. [Gie] D. Gieseker: On the moduli of vector bundles on an algebraic surface, Ann. Math.106 (1977) 45-60. Zbl0381.14003MR466475
  5. [Gri] P.A. Griffiths: Holomorphic mappings into cannonical algebraic varieties, Ann. of Math.93 (1971) 439-458. Zbl0214.48601MR281954
  6. [Gro] A. Grothendieck: Techniques de construction et théorèmes d'existence en géométrie algébrique IV: Les schémes de Hilbert, Sem. Bourbaki 1960/1961, Exposé 221. Zbl0236.14003
  7. [Kie] P. Kiernan: Meromorphic mappings into complex spaces of general type, Proc. Symp. in Pure Math. Vol. XXX, part 2, A.M.S., pp. 239-244. Zbl0358.32024MR447639
  8. [Kur] M. Kuranishi: New proof of existence of locally complete families of complex structures, Proceedings of the Conference on Complex Analysis, Minneapolis, 1964, Springer-Velag, Berlin (1965) pp. 142-154. Zbl0144.21102MR176496
  9. [L-O] M. Lübke and C. Okonek: Moduli spaces of simple bundles and Hermitian-Einstein connections, Math Ann.276 (1987) 663-674. Zbl0609.53009MR879544
  10. [Ma1] M. Maruyama: Moduli of stable sheaves, I and II, J. Math. Kyoto Univ.17 (1977) and 18 (1978). Zbl0395.14006MR450271
  11. [Ma2] M. Maruyama: Openness of a family of torsion free sheaves, J. Math. Kyoto Univ.16 (1976) 627-637. Zbl0404.14004MR429899
  12. [N-S] M.S. Narasimhan and C.S. Sheshadre: Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math.82 (1965) 540-567. Zbl0171.04803MR184252
  13. [Nor] A. Norton: Analytic moduli of complex vector bundles, Indiana Univ. Math. J.28 (1979) 365-387. Zbl0385.32018MR529671
  14. [Siu] Y.-T. Siu:Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Diff. Geom.17 (1982) 55-138. Zbl0497.32025MR658472
  15. [Sun] D. Sundararaman: Moduli, deformations, and classifications of compact complex manifolds, Research Notes in Math. 45, Pitman Advanced Publishing Program (1980). Zbl0435.32015MR596819
  16. [U-Y] K.K. Uhlenbeck and S.-T. Yau: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure and Appl. Math. 39-S(1986) 257-293. Zbl0615.58045MR861491

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.