Finite-dimensional categorial complement theorems in shape theory

Peter Mrozik

Compositio Mathematica (1988)

  • Volume: 68, Issue: 2, page 161-173
  • ISSN: 0010-437X

How to cite

top

Mrozik, Peter. "Finite-dimensional categorial complement theorems in shape theory." Compositio Mathematica 68.2 (1988): 161-173. <http://eudml.org/doc/89933>.

@article{Mrozik1988,
author = {Mrozik, Peter},
journal = {Compositio Mathematica},
keywords = {shape category; Z-sets in the Hilbert cube; Z-set complements; finite- dimensional complement theorems; m-connected ANR; m-admissible compacta; weak complete m-homotopy category; weak proper m-homotopy category; piecewise linear manifold; ILC embedding condition},
language = {eng},
number = {2},
pages = {161-173},
publisher = {Kluwer Academic Publishers},
title = {Finite-dimensional categorial complement theorems in shape theory},
url = {http://eudml.org/doc/89933},
volume = {68},
year = {1988},
}

TY - JOUR
AU - Mrozik, Peter
TI - Finite-dimensional categorial complement theorems in shape theory
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 68
IS - 2
SP - 161
EP - 173
LA - eng
KW - shape category; Z-sets in the Hilbert cube; Z-set complements; finite- dimensional complement theorems; m-connected ANR; m-admissible compacta; weak complete m-homotopy category; weak proper m-homotopy category; piecewise linear manifold; ILC embedding condition
UR - http://eudml.org/doc/89933
ER -

References

top
  1. 1 K. Borsuk: Theory of Retracts. Monografie Matematyczne Tom 44, PWNWarszawa (1967). Zbl0153.52905MR216473
  2. 2 T.A. Chapman: On some applications of infinite-dimensional manifolds to the theory of shape. Fund. Math.76 (1972) 181-193. Zbl0262.55016MR320997
  3. 3 T.A. Chapman: Shapes of finite-dimensional compacta, Fund. Math.76 (1972) 261-276. Zbl0222.55019MR320998
  4. 4 D.A. Edwards and H.M. Hastings: Čech and Steenrod Homotopy Theories with Applications to Geometric Topology. Lecture Notes in Math. 542, Springer, Berlin-Heidelberg-New York (1976). Zbl0334.55001MR428322
  5. 5 S Mardešić and J. Segal: Shape Theory. North Holland, Amsterdam (1982). Zbl0495.55001MR676973
  6. 6 R.E. Mosher and M.C. Tangora: Cohomology Operations and Applications in Homotopy Theory. Harper & Row, New York (1968). Zbl0153.53302MR226634
  7. 7 P. Mrozik: Chapman's category isomorphism for arbitrary ARs. Fund. Math.125 (1985) 195-208. Zbl0592.57013MR813757
  8. 8 R.B. Sher: Complement theorems in shape theory. In: Shape Theory and Geometric Topology S. Mardešić and J. Segal (ed.) Lecture Notes in Math.870, Springer, Berlin-Heidelberg -New York (1981) pp. 150-168. Zbl0494.57007MR643529
  9. 9 E.H. Spanier: Algebraic Topology. McGraw-Hill, New York (1966). Zbl0145.43303MR210112
  10. 10 G. Venema: Embeddings of compacta with shape dimension in the trivial range. Proc. Amer. Math. Soc.55 (1976) 443-448. Zbl0332.57005MR397738
  11. 11 G. Venema: Embeddings in shape theory. In: Shape Theory and Geometric Topology. S. Mardešić and J. Segal (eds.) Lecture Notes in Math.870, Springer, Berlin-Heidelberg -New York (1981) pp. 169-185. Zbl0491.57009MR643530

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.