# Finite-dimensional categorical complement theorems in strong shape theory and a principle of reversing maps between open subsets of spheres

Compositio Mathematica (1991)

- Volume: 77, Issue: 2, page 179-197
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topMrozik, Peter. "Finite-dimensional categorical complement theorems in strong shape theory and a principle of reversing maps between open subsets of spheres." Compositio Mathematica 77.2 (1991): 179-197. <http://eudml.org/doc/90071>.

@article{Mrozik1991,

author = {Mrozik, Peter},

journal = {Compositio Mathematica},

keywords = {generalized shape complement; embedding; fundamental dimension; connectivity; strong shape; duality theorem},

language = {eng},

number = {2},

pages = {179-197},

publisher = {Kluwer Academic Publishers},

title = {Finite-dimensional categorical complement theorems in strong shape theory and a principle of reversing maps between open subsets of spheres},

url = {http://eudml.org/doc/90071},

volume = {77},

year = {1991},

}

TY - JOUR

AU - Mrozik, Peter

TI - Finite-dimensional categorical complement theorems in strong shape theory and a principle of reversing maps between open subsets of spheres

JO - Compositio Mathematica

PY - 1991

PB - Kluwer Academic Publishers

VL - 77

IS - 2

SP - 179

EP - 197

LA - eng

KW - generalized shape complement; embedding; fundamental dimension; connectivity; strong shape; duality theorem

UR - http://eudml.org/doc/90071

ER -

## References

top- 1 F.W. Bauer, Some relations between shape constructions, Cahiers Topologie Géom. Diff.19 (1978), 337-367. Zbl0404.54028MR515162
- 2 A. Calder and H.M. Hastings, Realizing strong shape equivalences, J. Pure Appl. Algebra20 (1981), 129-156. Zbl0457.55004MR601680
- 3 F.W. Cathey, Strong shape theory in: Shape theory and Geometric Topology, (ed. S. Mardešiċ, J. Segal), 215-238Lecture Notes in Math. 870, Springer, Berlin -Heidelberg-New York1981. Zbl0473.55011MR643532
- 4 J. Dydak and J. Segal, Strong shape theory, Diss. Math.192 (1981), 1-42. Zbl0474.55007MR627528
- 5 D.A. Edwards and H.M. Hastings, Čech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Math. 542, Springer, Berlin -Heidelberg-New York1976. Zbl0334.55001MR428322
- 6 Q. Haxhibeqiri and S. Nowak, Stable shape, Lecture given at the Conference on Geometric Topology and Shape Theory, Dubrovnik1986.
- 7 Y. Kodama and J. Ono, On fine shape theory, Fund. Math.105 (1979), 29-39. Zbl0425.54016MR558127
- 8 Yu. T. Lisica, On the exactness of the spectral homotopy group sequence in shape theory, Soviet Math. Dok.18 (1977), 1186-1190. Zbl0398.55012
- 9 Yu. T. Lisica and S. Mardešić, Coherent prohomotopy theory and strong shape of metric compacta, Glasnik Mat.20 (40) (1985), 159-186. Zbl0592.55007MR818622
- 10 S Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam1982. Zbl0495.55001MR676973
- 11 P. Mrozik, Hereditary shape equivalences and complement theorems, Topology Appl.22 (1986), 131-137. Zbl0598.54006MR836320
- 12 P. Mrozik, Chapman's category isomorphism for arbitrary ARs, Fund. Math.125 (1985), 195-208. Zbl0592.57013MR813757
- 13 P. Mrozik, Finite-dimensional categorical complement theorems in shape theory, Compositio Math.68 (1988), 161-173. Zbl0665.55006MR966578
- 14 S. Nowak, On the relationship between shape properties of subcompacta of Sn and homotopy properties of their complements, Fund. Math.128 (1987), 47- 59. Zbl0633.55009MR919289
- 15 D. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer, Berlin -Heidelberg-New York1967. Zbl0168.20903MR223432
- 16 R.B. Sher, Complement theorems in shape theory, in: Shape Theory and Geometric Topology (ed. S. Mardešić, J. Segal), 150-168, Lecture Notes in Math. 870, Springer, Berlin-Heidelberg-New York1981. Zbl0494.57007MR643529
- 17 R.B. Sher, Complement theorems in shape theory II, in: Geometric Topology and Shape Theory (ed. S. Mardešić, J. Segal), 212-220, Lecture Notes in Math. 1283, Springer, Berlin-Heidelberg -New York1987. Zbl0631.55006MR922283
- 18 E.H. Spanier, Algebraic Topology, McGraw-Hill, New York1966. Zbl0145.43303MR210112
- 19 R.M. Switzer, Algebraic Topology-Homotopy and Homology, Springer, Berlin1975. Zbl1003.55002MR385836
- 20 G.A. Venema, Embeddings of compacta in the trivial range, Proc. Amer. Math. Soc.55 (1976), 443-448. Zbl0332.57005MR397738

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.