Torsion points on abelian varieties of CM-type

Alice Silverberg

Compositio Mathematica (1988)

  • Volume: 68, Issue: 3, page 241-249
  • ISSN: 0010-437X

How to cite

top

Silverberg, Alice. "Torsion points on abelian varieties of CM-type." Compositio Mathematica 68.3 (1988): 241-249. <http://eudml.org/doc/89937>.

@article{Silverberg1988,
author = {Silverberg, Alice},
journal = {Compositio Mathematica},
keywords = {number of conjugates of torsion point; abelian variety},
language = {eng},
number = {3},
pages = {241-249},
publisher = {Kluwer Academic Publishers},
title = {Torsion points on abelian varieties of CM-type},
url = {http://eudml.org/doc/89937},
volume = {68},
year = {1988},
}

TY - JOUR
AU - Silverberg, Alice
TI - Torsion points on abelian varieties of CM-type
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 68
IS - 3
SP - 241
EP - 249
LA - eng
KW - number of conjugates of torsion point; abelian variety
UR - http://eudml.org/doc/89937
ER -

References

top
  1. 1 D. Bertrand: Galois orbits on abelian varieties and zero estimates. London Math. Soc. Lecture Note Series 109 (Proc. Australian Math. Soc. Convention, 1985), Cambridge Univ. Press (1986) pp. 21-35. Zbl0597.10032MR874119
  2. 2 S. Lang: Complex Multiplication. Springer-Verlag (1983). Zbl0536.14029MR713612
  3. 3 D. Masser: Small values of the quadratic part of the Neron-Tate height on an abelian variety. Comp. Math.53 (1984) 153-170. Zbl0551.14015MR766295
  4. 4 J.B. Rosser and L. Schoenfeld: Approximate formulas for some functions of prime numbers. Ill. J. Math.6 (1962) 64-94. Zbl0122.05001MR137689
  5. 5 J.-P. Serre: Résume des Cours de 1985-1986. Collège de France (1986). 
  6. 6 G. Shimura: On canonical models of arithmetic quotients of bounded symmetric domains. Annals of Math.91 (1970) 144-222. Zbl0237.14009MR257031
  7. 7 G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Iwanami Shoten and Princeton Univ. Press (1971). Zbl0221.10029MR1291394
  8. 8 G. Shimura and Y. Taniyama: Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Publ. Math. Soc. Japan, No. 6 (1961). Zbl0112.03502MR125113
  9. 9 A. Silverberg: Mordell-Weil groups of generic abelian varieties. Inventiones Math.81 (1985) 71-106. Zbl0576.14020MR796192

NotesEmbed ?

top

You must be logged in to post comments.