A “Hardy-Littlewood” approach to the S -unit equation

G. R. Everest

Compositio Mathematica (1989)

  • Volume: 70, Issue: 2, page 101-118
  • ISSN: 0010-437X

How to cite


Everest, G. R.. "A “Hardy-Littlewood” approach to the $S$-unit equation." Compositio Mathematica 70.2 (1989): 101-118. <http://eudml.org/doc/89957>.

author = {Everest, G. R.},
journal = {Compositio Mathematica},
keywords = {projective height; valuations; S-unit equation; quantitative theory; Hardy-Littlewood method; theorem of Baker; linear forms in logarithms},
language = {eng},
number = {2},
pages = {101-118},
publisher = {Kluwer Academic Publishers},
title = {A “Hardy-Littlewood” approach to the $S$-unit equation},
url = {http://eudml.org/doc/89957},
volume = {70},
year = {1989},

AU - Everest, G. R.
TI - A “Hardy-Littlewood” approach to the $S$-unit equation
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 70
IS - 2
SP - 101
EP - 118
LA - eng
KW - projective height; valuations; S-unit equation; quantitative theory; Hardy-Littlewood method; theorem of Baker; linear forms in logarithms
UR - http://eudml.org/doc/89957
ER -


  1. 1 A. Baker and D.W. Masser (Editors): Transcendence Theory: Advances and Applications, Academic Press, London (1977). Zbl0357.00010MR498417
  2. 2 G.R. Everest: A"Hardy-Littlewood" approach to the norm-form equation, to appear in Math. Proc. Camb. Phil. Soc. (1988). Zbl0659.10051MR957247
  3. 3 G.R. Everest: A new invariant for time abelian extensions, to appear. Zbl0665.12004MR1072046
  4. 4 J.-H. Evertse: On sums of S-units and linear recurrences, Comp. Math.53 (1984) 225-244. Zbl0547.10008MR766298
  5. 5 K Györy: on the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv.54 (1979) 583-600. Zbl0437.12004MR552678
  6. 6 S. Lang: Integral points on curves, Inst. Hautes Edutes Sci. Publ. Math. No.6 (1960) 27-43. Zbl0112.13402MR130219
  7. 7 T. Nagell: Sur une propriété des unités d'un corps algebraique, Arkiv Für Mat.5 (1964) 343-356. Zbl0128.03403MR190128
  8. 8 W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers, Warsaw (1974). Zbl0276.12002MR347767
  9. 9 A.J. van der Poorten and H.-P. Schlickewei: The growth conditions for recurrence sequences, MacQuarie Math. Reports, 82-0041 (1982). 
  10. 10 H.-P. Schlickewei:Uber die diophantische Gleichung x, + ... + xn = 0, Acta. Arith.33 (1977) 183-185. Zbl0355.10017MR439747
  11. 11 K.R. Yu: Linear forms in logarithms in the p-adic case, Proceedings of the Durham Symposium on Transcendental Number Theory, July 1986, to appear. Zbl0656.10028MR972015

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.