A “Hardy-Littlewood” approach to the -unit equation
Compositio Mathematica (1989)
- Volume: 70, Issue: 2, page 101-118
 - ISSN: 0010-437X
 
Access Full Article
topHow to cite
topEverest, G. R.. "A “Hardy-Littlewood” approach to the $S$-unit equation." Compositio Mathematica 70.2 (1989): 101-118. <http://eudml.org/doc/89957>.
@article{Everest1989,
	author = {Everest, G. R.},
	journal = {Compositio Mathematica},
	keywords = {projective height; valuations; S-unit equation; quantitative theory; Hardy-Littlewood method; theorem of Baker; linear forms in logarithms},
	language = {eng},
	number = {2},
	pages = {101-118},
	publisher = {Kluwer Academic Publishers},
	title = {A “Hardy-Littlewood” approach to the $S$-unit equation},
	url = {http://eudml.org/doc/89957},
	volume = {70},
	year = {1989},
}
TY  - JOUR
AU  - Everest, G. R.
TI  - A “Hardy-Littlewood” approach to the $S$-unit equation
JO  - Compositio Mathematica
PY  - 1989
PB  - Kluwer Academic Publishers
VL  - 70
IS  - 2
SP  - 101
EP  - 118
LA  - eng
KW  - projective height; valuations; S-unit equation; quantitative theory; Hardy-Littlewood method; theorem of Baker; linear forms in logarithms
UR  - http://eudml.org/doc/89957
ER  - 
References
top- 1 A. Baker and D.W. Masser (Editors): Transcendence Theory: Advances and Applications, Academic Press, London (1977). Zbl0357.00010MR498417
 - 2 G.R. Everest: A"Hardy-Littlewood" approach to the norm-form equation, to appear in Math. Proc. Camb. Phil. Soc. (1988). Zbl0659.10051MR957247
 - 3 G.R. Everest: A new invariant for time abelian extensions, to appear. Zbl0665.12004MR1072046
 - 4 J.-H. Evertse: On sums of S-units and linear recurrences, Comp. Math.53 (1984) 225-244. Zbl0547.10008MR766298
 - 5 K Györy: on the number of solutions of linear equations in units of an algebraic number field, Comment. Math. Helv.54 (1979) 583-600. Zbl0437.12004MR552678
 - 6 S. Lang: Integral points on curves, Inst. Hautes Edutes Sci. Publ. Math. No.6 (1960) 27-43. Zbl0112.13402MR130219
 - 7 T. Nagell: Sur une propriété des unités d'un corps algebraique, Arkiv Für Mat.5 (1964) 343-356. Zbl0128.03403MR190128
 - 8 W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers, Warsaw (1974). Zbl0276.12002MR347767
 - 9 A.J. van der Poorten and H.-P. Schlickewei: The growth conditions for recurrence sequences, MacQuarie Math. Reports, 82-0041 (1982).
 - 10 H.-P. Schlickewei:Uber die diophantische Gleichung x, + ... + xn = 0, Acta. Arith.33 (1977) 183-185. Zbl0355.10017MR439747
 - 11 K.R. Yu: Linear forms in logarithms in the p-adic case, Proceedings of the Durham Symposium on Transcendental Number Theory, July 1986, to appear. Zbl0656.10028MR972015
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.