# On the number of solutions of linear equations in units of an algebraic number field.

Commentarii mathematici Helvetici (1979)

- Volume: 54, page 583-600
- ISSN: 0010-2571; 1420-8946/e

## Access Full Article

top## How to cite

topGyöry, K.. "On the number of solutions of linear equations in units of an algebraic number field.." Commentarii mathematici Helvetici 54 (1979): 583-600. <http://eudml.org/doc/139804>.

@article{Györy1979,

author = {Györy, K.},

journal = {Commentarii mathematici Helvetici},

keywords = {Baker's method; exponential diophantine equations},

pages = {583-600},

title = {On the number of solutions of linear equations in units of an algebraic number field.},

url = {http://eudml.org/doc/139804},

volume = {54},

year = {1979},

}

TY - JOUR

AU - Györy, K.

TI - On the number of solutions of linear equations in units of an algebraic number field.

JO - Commentarii mathematici Helvetici

PY - 1979

VL - 54

SP - 583

EP - 600

KW - Baker's method; exponential diophantine equations

UR - http://eudml.org/doc/139804

ER -

## Citations in EuDML Documents

top- G. R. Everest, A “Hardy-Littlewood” approach to the $S$-unit equation
- J. H. Evertse, K. Győry, Effective finiteness theorems for decomposable forms of given discriminant
- E. Bombieri, J. Mueller, M. Poe, The unit equation and the cluster principle
- Jan-Hendrik Evertse, On sums of $S$-units and linear recurrences
- B. Brindza, Zeros of polynomials and exponential diophantine equations
- J. H. Evertse, K. Gyory, Effective finiteness results for binary forms with given discriminant
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.