On the number of solutions of linear equations in units of an algebraic number field.
Commentarii mathematici Helvetici (1979)
- Volume: 54, page 583-600
- ISSN: 0010-2571; 1420-8946/e
Access Full Article
topHow to cite
topGyöry, K.. "On the number of solutions of linear equations in units of an algebraic number field.." Commentarii mathematici Helvetici 54 (1979): 583-600. <http://eudml.org/doc/139804>.
@article{Györy1979,
author = {Györy, K.},
journal = {Commentarii mathematici Helvetici},
keywords = {Baker's method; exponential diophantine equations},
pages = {583-600},
title = {On the number of solutions of linear equations in units of an algebraic number field.},
url = {http://eudml.org/doc/139804},
volume = {54},
year = {1979},
}
TY - JOUR
AU - Györy, K.
TI - On the number of solutions of linear equations in units of an algebraic number field.
JO - Commentarii mathematici Helvetici
PY - 1979
VL - 54
SP - 583
EP - 600
KW - Baker's method; exponential diophantine equations
UR - http://eudml.org/doc/139804
ER -
Citations in EuDML Documents
top- G. R. Everest, A “Hardy-Littlewood” approach to the -unit equation
- J. H. Evertse, K. Győry, Effective finiteness theorems for decomposable forms of given discriminant
- E. Bombieri, J. Mueller, M. Poe, The unit equation and the cluster principle
- Jan-Hendrik Evertse, On sums of -units and linear recurrences
- B. Brindza, Zeros of polynomials and exponential diophantine equations
- J. H. Evertse, K. Gyory, Effective finiteness results for binary forms with given discriminant
- Yann Bugeaud, Kálmán Győry, Bounds for the solutions of unit equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.