Invariant ideals of polynomial algebras with multiplicity free group action

G. C. M. Ruitenburg

Compositio Mathematica (1989)

  • Volume: 71, Issue: 2, page 181-227
  • ISSN: 0010-437X

How to cite

top

Ruitenburg, G. C. M.. "Invariant ideals of polynomial algebras with multiplicity free group action." Compositio Mathematica 71.2 (1989): 181-227. <http://eudml.org/doc/89972>.

@article{Ruitenburg1989,
author = {Ruitenburg, G. C. M.},
journal = {Compositio Mathematica},
keywords = {algebraic group; irreducible linear representation; simply connected form; quotient map; G-action; induced action; G-orbits; graded G- invariant ideals; Young diagrams},
language = {eng},
number = {2},
pages = {181-227},
publisher = {Kluwer Academic Publishers},
title = {Invariant ideals of polynomial algebras with multiplicity free group action},
url = {http://eudml.org/doc/89972},
volume = {71},
year = {1989},
}

TY - JOUR
AU - Ruitenburg, G. C. M.
TI - Invariant ideals of polynomial algebras with multiplicity free group action
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 71
IS - 2
SP - 181
EP - 227
LA - eng
KW - algebraic group; irreducible linear representation; simply connected form; quotient map; G-action; induced action; G-orbits; graded G- invariant ideals; Young diagrams
UR - http://eudml.org/doc/89972
ER -

References

top
  1. [Ab] S. Abeasis, Gli ideali GL(V)-invarianti in S(S2 V), Rendiconti Matematica (2), 13, serie IV (1980) 235-262. Zbl0512.14027
  2. [ADF] S. Abeasis and A. Del Fra, Young diagrams and ideas of pfaffians, Adv. in Math.35 (1980) 158-178. Zbl0444.20037MR560133
  3. [AM] M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison Wesley (1969). Zbl0175.03601MR242802
  4. [Br] M. Brion, Representations exceptionnelles des groupes semi-simples, Ann. scient. Ec. Norm. Sup.4e série, t.18 (1985) 345-387. Zbl0588.22010MR816368
  5. [CP] C de Concini and C. Procesi, Complete symmetric varieties, Lect. Notes in Math. 996, Springer Verlag (1983). Zbl0581.14041MR718125
  6. [CEP] C. de Concini, D. Eisenbud and C. Procesi, Young diagrams and determinantal varieties, Inventiones Math.56 (1980) 129-165. Zbl0435.14015MR558865
  7. [D] L. Dickson, A class of groups in an arbitrary realm connected with the configuration of the 27 lines on a cubic surface, Quarterly J. Pure and Appl. Math.33 (1901) 145-173. Zbl32.0133.01JFM32.0133.01
  8. [EH] D. Eisenbud and M. Hochster, A Nullstellensatz with nilpotents, and Zariski's main lemma on holomorphic functionsJournal of Algebra58 (17) 157-161. Zbl0417.14001MR535850
  9. [F] H. Freudenthal, Beziehungen der E7 und E8 zur Oktavenebene VIII, Proc. Kon. Ak. v. Wet. A62 (1959) 447-465. Zbl0128.15302
  10. [HO] G.J. Heckman and E.M. Opdam, Root systems and hypergeometric functions I, Comp. Math.64, (3) (1987) 329-352. Zbl0656.17006MR918416
  11. [H] G.J. Heckman, Root systems and hypergeometric functions II, Comp. Math.64, (3) (1987) 353-373. Zbl0656.17007MR918417
  12. [Hel1] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Acad. Press. (1978). Zbl0451.53038MR514561
  13. [He12] S. Helgason, Groups and geometric analysis, Acad. Press. (1984). Zbl0543.58001MR754767
  14. [He13] S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. in Math.5 (1970) 1-154. Zbl0209.25403MR263988
  15. [Hu1] J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer Verlag (1972). Zbl0254.17004MR323842
  16. [Hu2] J.E. Humphreys, Linear algebraic groups, Springer Verlag (1975). Zbl0325.20039MR396773
  17. [Ka] V.G. Kac, Some remarks on nilpotent orbits, Journal of Algebra64 (1980) 190-213. Zbl0431.17007MR575790
  18. [Kr] H. Kraft, Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg & Sohn (1984). Zbl0569.14003MR768181
  19. [LV] R. Lazarsfeld and A. Van de Ven, Topics in the geometry of projective space, Recent Work of F.L. Zak, Birkhäuser (1984). Zbl0564.14007MR808175
  20. [M] I.G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press., Oxford (1979). Zbl0487.20007MR553598
  21. [R] R.W. Richardson, Orbits, Invariants, and Representations Associated to Involutions of Reductive Groups, Inventiones Math.66 (1982) 287-312. Zbl0508.20021MR656625
  22. [V1] T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. math. France102 (1974) 317-333. Zbl0332.22018MR366941
  23. [V2] T. Vust, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, Grenoble26 (1) (1976) 1-31. Zbl0314.20035MR404280
  24. [ZS] O. Zariski and P. Samuel, Commutative algebra, Vol. II, D. van Nostrand Company (1960). Zbl0121.27801MR120249

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.