Root systems and hypergeometric functions. II
Compositio Mathematica (1987)
- Volume: 64, Issue: 3, page 353-373
- ISSN: 0010-437X
Access Full Article
topHow to cite
topHeckman, G. J.. "Root systems and hypergeometric functions. II." Compositio Mathematica 64.3 (1987): 353-373. <http://eudml.org/doc/89880>.
@article{Heckman1987,
author = {Heckman, G. J.},
journal = {Compositio Mathematica},
keywords = {Nilsson class function; monodromy; hypergeometric function; Weyl group invariant analytic function; orthogonality relation; Jacobi polynomials; root system},
language = {eng},
number = {3},
pages = {353-373},
publisher = {Martinus Nijhoff Publishers},
title = {Root systems and hypergeometric functions. II},
url = {http://eudml.org/doc/89880},
volume = {64},
year = {1987},
}
TY - JOUR
AU - Heckman, G. J.
TI - Root systems and hypergeometric functions. II
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 3
SP - 353
EP - 373
LA - eng
KW - Nilsson class function; monodromy; hypergeometric function; Weyl group invariant analytic function; orthogonality relation; Jacobi polynomials; root system
UR - http://eudml.org/doc/89880
ER -
References
top- [D] P. Deligne, Équations Differentielles à Points Singuliers Réguliers, LNM 163, Springer Verlag (1970). Zbl0244.14004MR417174
- [HO] G.J. Heckman and E.M. Opdam, Root systems and hypergeometric functions I, Comp. Math.64 (1987) 329-352. Zbl0656.17006MR918416
- [Kl] F. Klein, Vorlesungen über die Hypergeometrische Funktion, Grundl. Math. Wissenschaften, Springer (1933). MR668700JFM59.0375.11
- [KO] M. Kashiwara and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann of Math.106 (1977) 154-200. Zbl0358.35073MR482870
- [vdL] H. v.d. Lek, The homotopy type of complex hyperplane complements, Thesis, Nijmegen (1983).
- [M] I.G. Macdonald, Some conjectures for root systems, Siam J. Math. Anal.13(6) (1982) 988-1007. Zbl0498.17006MR674768
- [Op] E.M. Opdam, Root systems and hypergeometric functions III, to appear in Comp. Math. Zbl0669.33007MR949270
- [Os] T. Oshima, A Definition of Boundary Values of Solutions of Partial Differential Equations with Regular Singularities, Publ. RIMS, Kyoto Univ19 (1983) 1203-1230. Zbl0559.35007MR723467
- [P] J. Plemelj, Problems in the Sense of Riemann and Klein, Interscience Publ. (1964). Zbl0124.28203MR174815
- [R] B. Riemann, Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, y; x) darstellbaren Funktionen, Ges. Abh., 67-87 (1857).
- [S] I.G. Sprinkhuizen-Kuyper, Orthogonal polynomials in 2 variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola. Siam J. Math. Anal.7(4) (1976) 501-518. Zbl0332.33011MR415187
- [WW] E.T. Whittaker and G.T. Watson, A Course in Modern Analysis, Cambr. Univ. Press (1927). JFM45.0433.02
Citations in EuDML Documents
top- E. M. Opdam, Root systems and hypergeometric functions III
- E. M. Opdam, Root systems and hypergeometric functions IV
- Pavel Etingof, Konstantin Styrkas, Algebraic integrability of Schrodinger operators and representations of Lie algebras
- J. F. Van Diejen, Commuting difference operators with polynomial eigenfunctions
- G. C. M. Ruitenburg, Invariant ideals of polynomial algebras with multiplicity free group action
- I. G. MacDonald, Affine Hecke algebras and orthogonal polynomials
- E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
- G. J. Heckman, Dunkl operators
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.