On hypersurface singularities which are stems

Ruud Pellikaan

Compositio Mathematica (1989)

  • Volume: 71, Issue: 2, page 229-240
  • ISSN: 0010-437X

How to cite


Pellikaan, Ruud. "On hypersurface singularities which are stems." Compositio Mathematica 71.2 (1989): 229-240. <http://eudml.org/doc/89973>.

author = {Pellikaan, Ruud},
journal = {Compositio Mathematica},
keywords = {transversal singularities; germ of analytic function; singular locus; stem},
language = {eng},
number = {2},
pages = {229-240},
publisher = {Kluwer Academic Publishers},
title = {On hypersurface singularities which are stems},
url = {http://eudml.org/doc/89973},
volume = {71},
year = {1989},

AU - Pellikaan, Ruud
TI - On hypersurface singularities which are stems
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 71
IS - 2
SP - 229
EP - 240
LA - eng
KW - transversal singularities; germ of analytic function; singular locus; stem
UR - http://eudml.org/doc/89973
ER -


  1. 1 V.I. Arnold: Singularity theory, selected papers, Lecture Note Ser. 53Cambridge Un. Press. Cambridge (1981). Zbl0457.58002MR631683
  2. 2 M. Artin: On the solutions of analytic equations, Inventiones Math.5 (1968) 277-291. Zbl0172.05301MR232018
  3. 3 M. Artin: Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math.36 (1969) 23-58. Zbl0181.48802MR268188
  4. 4 H.A. Hamm and Lê D.T.: Un thérorème de Zariski du type de Lefschetz, Ann. Scient. Éc. Norm. Sup.6 (1973) 317-366. Zbl0276.14003MR401755
  5. 5 H. Hironaka: On the equivalence of singularities I, in Arithmetical Algebraic Geometry. Proceedings, Harper and Row, New York, (1965). Zbl0147.20502MR201433
  6. 6 H. Hironaka: Formal line bundles along exeptional loci, in Algebraic Geometry, Bombay Colloquium1968, Oxford Un. Press (1969) pp. 201-218. Zbl0205.24802MR262249
  7. 7 S. Izumiya and S. Matsuoka: Notes on smooth function germs on varieties, Proc. Am. Math. Soc.97 (1986) 146-150. Zbl0594.58013MR831404
  8. 8 J. Mather: Stability of C ∞-mappings III. Finitely determined map germs, Inst. Hautes Études Sci. Publ. Math.35 (1969) 127-156. Zbl0159.25001
  9. 9 H. Matsumura: Commutative algebra, Math. Lecture Note Ser.56, Benjamin, New York (1970). Zbl0211.06501MR266911
  10. 10 D. Mond: On the classification of germs of maps from R2 to R3, Proc. London Math. Soc.50 (1985) 333-369. Zbl0557.58006MR772717
  11. 11 D. Mond: Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology26 (1987) 361-383. Zbl0654.32008MR899055
  12. 12 R. Pellikaan: Hypersurface singularities and resolutions of Jacobi modules, thesis, Rijksuniversiteit Utrecht (1985). Zbl0589.32017
  13. 13 R. Pellikaan: Series of isolated singularities, Proceedings, Singularities at Iowa 1986, Am. Math. Soc. Contempory Math. Ser., to appear. Zbl0675.32009MR1000606
  14. 14 R. Pellikaan: Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc.57 (1988) 357-382. Zbl0621.32019MR950595
  15. 15 D. Siersma: Isolated line singularities, in Proc. Symp. Pure Math.40, Singularities at Arcata (1981), ed, P. Orlik, part 2, pp. 485-496. Zbl0514.32007MR713274
  16. 16 D. van Straten: Weakly normal surface singularities and their improvements, thesis Rijksuniversiteit Leiden (1987). 
  17. 17 J.C. Tougeron: Idéaux de fonctions différentiables I, Ann. Inst. Fourier18 (1968) 177-240. Zbl0188.45102MR240826
  18. 18 J.C. Tougeron: Idéaux de fonctions différentiables, Ergeb. Math. Grenzgebiete71Springer, Berlin etc. (1972). Zbl0251.58001MR440598
  19. 19 J. Wavrik: A theorem on solutions of analytic equations with applications to deformations of complex structures, Math. Ann.216 (1975) 127-142. Zbl0303.32018MR387649
  20. 20 H. Whitney: Local properties of analytic varieties. Differential and Combinatorial Topology, Princeton (1965) pp. 205-244. Zbl0129.39402MR188486

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.