The tame fundamental group of an abelian variety and integral points

M. L. Brown

Compositio Mathematica (1989)

  • Volume: 72, Issue: 1, page 1-31
  • ISSN: 0010-437X

How to cite

top

Brown, M. L.. "The tame fundamental group of an abelian variety and integral points." Compositio Mathematica 72.1 (1989): 1-31. <http://eudml.org/doc/89981>.

@article{Brown1989,
author = {Brown, M. L.},
journal = {Compositio Mathematica},
keywords = {Grothendieck tame fundamental group; effective reduced divisor; abelian variety; abelianization; Tate module; integral subset with respect to a domain; group of rational points},
language = {eng},
number = {1},
pages = {1-31},
publisher = {Kluwer Academic Publishers},
title = {The tame fundamental group of an abelian variety and integral points},
url = {http://eudml.org/doc/89981},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Brown, M. L.
TI - The tame fundamental group of an abelian variety and integral points
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 1
SP - 1
EP - 31
LA - eng
KW - Grothendieck tame fundamental group; effective reduced divisor; abelian variety; abelianization; Tate module; integral subset with respect to a domain; group of rational points
UR - http://eudml.org/doc/89981
ER -

References

top
  1. 1 S. Abhyankar, Tame coverings and fundamental groups of algebraic varieties, Part I. Branch loci with normal crossings; Applications: theorems of Zariski and Picard. American J. Math.81 (1959) 46-94. Zbl0100.16401MR104675
  2. 2 M.L. Brown, Remark on two Diophantine conjectures, Bull. London Math. Soc.17 (1985) 391-392. Zbl0585.14016MR806636
  3. 3 G. Edmunds, Coverings of node curves, Journal London Math. Soc.1 (1969) 473-479. Zbl0181.48902MR265363
  4. 4 G. Faltings, G. Wüstholz, Rational Points, Aspects of Mathematics No. E6, Vieweg, Braunschweig/Wiesbaden, 1984. Zbl0588.14027MR766568
  5. 5 A. Grothendieck, Revêtements Étales et Groupe Fondamental (SGA1), Lecture Notes in Math. 224, Springer-Verlag, New York1971. Zbl0234.14002MR354651
  6. 6 A. Grothendieck, Eléments de Géométrie Algébrique, I.H.E.S. Publ. Math. 1960-67. 
  7. 7 R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., Springer-Verlag, 1977. Zbl0367.14001MR463157
  8. 8 M. Hindry, Points de torsion sur les sous-variétés de variétés abéliennes, C.R. Acad. Sci. Paris304 (1987) Série 1, 311-314. Zbl0621.14026MR889751
  9. 9 S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, in: Papers dedicated to K. Kodaira; Complex Analysis and Geometry, C.U.P.1972. Zbl0351.14016
  10. 10 Y. Kawamata, The cone of curves of algebraic varieties, Annals of Math.119 (1984) 603-633. Zbl0544.14009MR744865
  11. 11 S. Lang, Integral points on curves, I.H.E.S. Publ. Math.6 (1960) 27-43. Zbl0112.13402MR130219
  12. 12 S. Lang, Abelian Varieties, Interscience, New York1959. Zbl0098.13201MR106225
  13. 13 S. Lang, Hyperbolicity and Diophantine analysis, Bull, Amer. Math. Soc.14 (1986) 159-206. Zbl0602.14019MR828820
  14. 14 D.W. Masser, Linear forms in algebraic points of abelian functions, Proc. L.M.S. 33 (1976) 549-564. Zbl0334.14019MR424717
  15. 15 D. Mumford, Abelian Varieties, O.U.P., Oxford1970. Zbl0223.14022MR282985
  16. 16 J. Noguchi, A higher dimensional analogue of Mordell's conjecture over function fields, Math. Annalen258 (1981) 207-212. Zbl0459.14002MR641826
  17. 17 M. Raynaud, Sous-variétés d'une variété abélienne et points de torsion, in: Arithmetic and Geometry, Progress in Math. 35, Birkhaüser (1983) 327-352. Zbl0581.14031
  18. 18 J-P. Serre, Revêtements ramifiés du plan projectif (d'aprés Abhyankar), Séminaire Bourbaki Mai 1960 no. 204. Zbl0115.38403
  19. 19 J-P. Serre, Lectures on the Mordell-Weil theorem, Aspects of Mathematics No. E15, Vieweg, Braunschweig/Wiesbaden1989. Zbl0676.14005MR1757192
  20. 20 J.H. Silverman, Integral points on abelian varieties, Invent. Math.81 (1985), 341-346 (Correction, Invent. Math. 84 (1986) 223). Zbl0585.14030MR799270
  21. 21 E. Viehweg, Vanishing theorems, J. Reine und ang. Math.335 (1982) 1-8. Zbl0485.32019MR667459
  22. 22 P. Vojta, Diophantine Approximation and Value Distribution Theory, Lecture Notes in Math. 1239, Springer-Verlag, New York1987. Zbl0609.14011MR883451

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.