A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution

József Beck

Compositio Mathematica (1989)

  • Volume: 72, Issue: 3, page 269-339
  • ISSN: 0010-437X

How to cite

top

Beck, József. "A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution." Compositio Mathematica 72.3 (1989): 269-339. <http://eudml.org/doc/89992>.

@article{Beck1989,
author = {Beck, József},
journal = {Compositio Mathematica},
keywords = {irregularities of distribution; discrepancy; k-dimensional unit-cube},
language = {eng},
number = {3},
pages = {269-339},
publisher = {Kluwer Academic Publishers},
title = {A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution},
url = {http://eudml.org/doc/89992},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Beck, József
TI - A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 3
SP - 269
EP - 339
LA - eng
KW - irregularities of distribution; discrepancy; k-dimensional unit-cube
UR - http://eudml.org/doc/89992
ER -

References

top
  1. 1 Aardenne-Ehrenfest, T. van: "Proof of the impossibility of a just distribution of an infinite sequence of points over an interval", Proc. Kon. Ned. Akad. v. Wetensch.48, 266-271 (1945). Zbl0060.13002MR15143
  2. 2 Aardenne-Ehrenfest, T. van: "On the impossibility of a just distribution ", Proc. Kon. Ned. Akad. v. Wetensch.52, 734-739 (1949). Zbl0035.32002MR32717
  3. 3 Beck, J. and Chen, W.W.L.: Irregularities of Distribution (Cambridge University Press1987). Zbl0617.10039MR903025
  4. 4 Corput, J.G. van der: "Verteilungsfunktionen. I.", Proc. Kon. Ned. Akad. v. Wetensch.38, 813-821 (1935). Zbl0012.34705JFM61.0202.08
  5. 5 Halász, G.: "On Roth's method in the theory of irregularities of point distributions ", Recent Progress in Analytic Number Theory, vol. 2, pp. 79-94 (Academic Press, London, 1981). Zbl0459.10032MR637361
  6. 6 Hardy, G.H. and Littlewood, J.E.: "The lattice points of a right-angled triangle. I.", Proc. London Math. Soc.3(20), 15-36 (1922). Zbl48.0197.07JFM48.0197.07
  7. 7 Lerch, M.: "Question 1547", L'Intermédiaire Math.11, 145-146 (1904). 
  8. 8 Ostrowski, A.: "Bemerkungen zur Theorie der Diophantischen Approximationen. I.", Abh. Hamburg Sem.1, 77-98 (1922). Zbl48.0185.01JFM48.0185.01
  9. 9 Roth, K.F.: "On irregularities of distribution", Mathematika1, 73-79 (1954). Zbl0057.28604MR66435
  10. 10 Schmidt, W.M.: "Irregularities of distribution. VII.", Acta Arith.21, 45-50 (1972). Zbl0244.10035MR319933
  11. 11 Schmidt, W.M.: "Irregularities of distribution. X.", Number Theory and Algebra, pp. 311-329 (Academic Press, New York, 1977). Zbl0373.10020MR491574

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.