p -adic heights for semi-stable abelian varieties

John W. Jones

Compositio Mathematica (1990)

  • Volume: 73, Issue: 1, page 31-56
  • ISSN: 0010-437X

How to cite


Jones, John W.. "$p$-adic heights for semi-stable abelian varieties." Compositio Mathematica 73.1 (1990): 31-56. <http://eudml.org/doc/89996>.

author = {Jones, John W.},
journal = {Compositio Mathematica},
keywords = {algebraic -adic height pairing for abelian varieties; singular reductions; cohomology groups},
language = {eng},
number = {1},
pages = {31-56},
publisher = {Kluwer Academic Publishers},
title = {$p$-adic heights for semi-stable abelian varieties},
url = {http://eudml.org/doc/89996},
volume = {73},
year = {1990},

AU - Jones, John W.
TI - $p$-adic heights for semi-stable abelian varieties
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 1
SP - 31
EP - 56
LA - eng
KW - algebraic -adic height pairing for abelian varieties; singular reductions; cohomology groups
UR - http://eudml.org/doc/89996
ER -


  1. 1 Grothendieck, A.: "Le groupe de Brauer III", Dix exposes sur la cohomologie des schemes. Zbl0198.25901
  2. 2 Jones, J.: Iwasawa L-functions of multiplicative Abelian varieties. Duke Math. J. (to appear). Zbl0716.14008MR1016896
  3. 3 Mazur, B.: Rational points on abelian varieties with values in towers of number fields. Invent. math.18, 183-266 (1972). Zbl0245.14015MR444670
  4. 4 Mazur, B., Messing, W.: Universal extensions and one-dimensional crystalline cohomology. Lecture Notes in Math., vol. 370. Berlin-Heidelberg-New York: Springer (1974). Zbl0301.14016MR374150
  5. 5 Mazur, B., Tate, J.: "Canonical heights via biextensions", in Arithmetic and Geometry, vol I, Birkäuser, 195-238 (1983). Zbl0574.14036
  6. 6 Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. math.84, 1-48 (1986). Zbl0699.14028MR830037
  7. 7 McCallum, W.: Duality theorems for Neŕon models. Duke Math. J.531093-1124 (1986). Zbl0623.14023MR874683
  8. 8 Nasybullin, A.: Elliptic Tate curves over local Γ-extensions. Math. Notes of U.S.S.R.13322-327 (1973). Zbl0268.14011
  9. 9 Schneider, P.: p-adic height pairings I. Invent. math.69, 401-409 (1982). Zbl0509.14048MR679765
  10. 10 Schneider, P.: Iwasawa L-functions of varieties over algebraic number fields. A first approach. Invent. math.71, 251-293 (1983). Zbl0511.14010MR689645
  11. 11 Schneider, P.: p-adic height pairings II. Invent. math. 79, 329-374 (1985). Zbl0571.14021MR778132

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.