Les modules simples sphériques d'une algèbre de Lie nilpotente

Yves Benoist

Compositio Mathematica (1990)

  • Volume: 73, Issue: 3, page 295-327
  • ISSN: 0010-437X

How to cite

top

Benoist, Yves. "Les modules simples sphériques d'une algèbre de Lie nilpotente." Compositio Mathematica 73.3 (1990): 295-327. <http://eudml.org/doc/90007>.

@article{Benoist1990,
author = {Benoist, Yves},
journal = {Compositio Mathematica},
keywords = {orbit method; nilpotent Lie algebra; involution; simple spherical modules; differential operators; derived functors},
language = {fre},
number = {3},
pages = {295-327},
publisher = {Kluwer Academic Publishers},
title = {Les modules simples sphériques d'une algèbre de Lie nilpotente},
url = {http://eudml.org/doc/90007},
volume = {73},
year = {1990},
}

TY - JOUR
AU - Benoist, Yves
TI - Les modules simples sphériques d'une algèbre de Lie nilpotente
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 3
SP - 295
EP - 327
LA - fre
KW - orbit method; nilpotent Lie algebra; involution; simple spherical modules; differential operators; derived functors
UR - http://eudml.org/doc/90007
ER -

References

top
  1. [B-B] A. Beilinson and J. Bernstein, Localisation de g-modules, C.R.A.S. Paris292 (1981) p. 15-18. Zbl0476.14019MR610137
  2. [Be 1] Y. Benoist, Multiplicité un pour les espaces symétriques exponentiels, Mem. Soc. Math. Fr.15 (1984) p. 1-37. Zbl0562.43005MR789079
  3. [Be 2] Y. Benoist, Analyse harmonique sur les espaces symétriques nilpotents, Journ. Funct. Anal.59 (1984) p. 211-253. Zbl0555.43012MR766490
  4. [Be 3] Y. Benoist, Modules simples sur une algèbre de Lie nilpotente contenant un vecteur propre pour une sous-algèbre, Ann. Sc. E.N.S. (à paraître) Zbl0717.17015
  5. [C-G-P] E. Corwin, F.P. Greenleaf and R. Penney, A general character formula for irreducible projections on L2 of a nilmanifold, Math. Ann.225 (1977) p. 21-32. Zbl0322.46049MR425021
  6. [Di] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris (1974). Zbl0308.17007MR498737
  7. [Do] S. Donkin, On the Hopf algebra dual of an enveloping algebra, Math. Proc. Camb. Phil. Soc.91 (1982) p. 215-224. Zbl0485.17003MR641525
  8. [dC] F. du Cloux, Foncteurs dérivés des vecteurs g-finis, appendice dans: "Représentations de longueur finie des groupes de Lie résolubles"Mem. A.M.S.407 (1989) p. 66-76. 
  9. [D-V] M. Duflo and M. Vergne, Sur le foncteur de Zuckerman, C.R.A.S. Paris304 (1987) p. 467-469. Zbl0617.17007MR894570
  10. [Gu] A. Guichardet, Cohomologie des groupes topologiques et des algèbres de Lie, Cedic, Paris (1980). Zbl0464.22001MR644979
  11. [H-S] G. Hochschild, J.P. Serre, Cohomology of the Lie algebras, Ann. Math.57 (1953) p. 591-603. Zbl0053.01402MR54581
  12. [Ki] A.A. Kirillov, Représentations unitaires des groupes de Lie nilpotents, Usp. Mat. Nauk.17 (1962) p. 57-110. Zbl0106.25001
  13. [Vo] D. Vogan, Representations of real reductive Lie groups, Progress in Math.15Birkhaüser (1981). Zbl0469.22012MR632407
  14. [Wi] D. Wigner, Sur l'homologie relative des algèbres de Lie et une conjecture de Zuckerman, C.R.A.S. Paris305 (1987) p. 59-62. Zbl0617.17006MR901135

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.