Sur l’approximation de π par des nombres algébriques particuliers

Guy Diaz

Compositio Mathematica (1990)

  • Volume: 74, Issue: 3, page 285-298
  • ISSN: 0010-437X

How to cite


Diaz, Guy. "Sur l’approximation de $\pi $ par des nombres algébriques particuliers." Compositio Mathematica 74.3 (1990): 285-298. <>.

author = {Diaz, Guy},
journal = {Compositio Mathematica},
keywords = {approximation by algebraic numbers; cyclotomic fields; logarithmic Weil height; lower bound},
language = {fre},
number = {3},
pages = {285-298},
publisher = {Kluwer Academic Publishers},
title = {Sur l’approximation de $\pi $ par des nombres algébriques particuliers},
url = {},
volume = {74},
year = {1990},

AU - Diaz, Guy
TI - Sur l’approximation de $\pi $ par des nombres algébriques particuliers
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 74
IS - 3
SP - 285
EP - 298
LA - fre
KW - approximation by algebraic numbers; cyclotomic fields; logarithmic Weil height; lower bound
UR -
ER -


  1. [1] Cijsouw, P.L., A transcendence measure for π, in "Transcendence Theory: Advances and Applications" (edited by A. Baker, D. W. Masser), Academic Press, 1977, 93-100. Zbl0361.10029
  2. [2] Feldman, N.I., Approximation of number π by algebraic numbers from special fields. J. Number Theory9 (1977) 48-60. Zbl0345.10018
  3. [3] Mignotte, M. et Waldschmidt, M., Approximation des valeurs de fonctions transcendantes. Indag. Math.37(1975) 213-223. Zbl0305.10027MR376552
  4. [4] Mignotte, M. et Waldschmidt, M., Approximation simultanée de valeurs de la fonction exponentielle. Compositio Math.34 (1977) 127-139. Zbl0345.10022MR441884
  5. [5] Mignotte, M. et Waldschmidt, M.: Linear forms in two logarithms and Schneider's method III. Ann. Fac. Sci. Toulouse Math. (à paraître). Zbl0702.11044
  6. [6] Philippon, P., Polynôme d'interpolation sur Z et Z[i]. Actes du colloque A. Durand (I.H.P.1988) (à paraître). Zbl0701.11023
  7. [7] Philippon, P., Lemmes de zéros dans les groupes algébriques commutatifs. Bull. Soc. Math. France114(1986) 355-383. Zbl0617.14001MR878242
  8. [8] Rosser, J.B. et Schoenfeld, L., Sharper bounds for the Chebyshev functions θ(x), ϕ(x). Math. Comp.29(1975) 243-269. Zbl0295.10036
  9. [9] Waldschmidt, M., Nombres transcendants. Lecture Notes in Math. 402, Springer, 1974. Zbl0302.10030MR360483
  10. [10] Waldschmidt, M., Transcendence measures for exponentials and logarithms. J. Austral. Math. Soc. Ser.A, 25(1978)445-465. Zbl0388.10022MR508469
  11. [11] Waldschmidt, M., A lower bound for linear forms in logarithms. Acta Arith.37(1980) 257-283. Zbl0357.10017MR598881
  12. [12] Waldschmidt, M., Transcendance et exponentielles en plusieurs variables. Invent. Math.63 (1981) 97-127. Zbl0454.10020MR608530

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.