Convergence theorem for riemannian manifolds with boundary

Shigeru Kodani

Compositio Mathematica (1990)

  • Volume: 75, Issue: 2, page 171-192
  • ISSN: 0010-437X

How to cite

top

Kodani, Shigeru. "Convergence theorem for riemannian manifolds with boundary." Compositio Mathematica 75.2 (1990): 171-192. <http://eudml.org/doc/90032>.

@article{Kodani1990,
author = {Kodani, Shigeru},
journal = {Compositio Mathematica},
keywords = {Lipschitz convergence; Hausdorff convergence; cut locus of the boundary; comparison theorem},
language = {eng},
number = {2},
pages = {171-192},
publisher = {Kluwer Academic Publishers},
title = {Convergence theorem for riemannian manifolds with boundary},
url = {http://eudml.org/doc/90032},
volume = {75},
year = {1990},
}

TY - JOUR
AU - Kodani, Shigeru
TI - Convergence theorem for riemannian manifolds with boundary
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 171
EP - 192
LA - eng
KW - Lipschitz convergence; Hausdorff convergence; cut locus of the boundary; comparison theorem
UR - http://eudml.org/doc/90032
ER -

References

top
  1. [1] Cheeger, J., Finiteness theorems for Riemannian manifolds, Amer. J. Math.92 (1970) 61-74. Zbl0194.52902MR263092
  2. [2] Cheeger, J. and Ebin, D.G., Comparison Theorems in Riemannian Geometry. North Holland, 1975. Zbl0309.53035MR458335
  3. [3] Chen, B.Y., Geometry of Submanifolds, Marcel Dekker, New York, 1973. Zbl0262.53036MR353212
  4. [4] Eschenburg, J.H., Local convexity and nonnegative curvature - Gromov's proof of sphere theorem, Invent. math.84 (1986) 507-522. Zbl0594.53034MR837525
  5. [5] Eschenburg, J.H. and O'Sullivan, J.J., Jacobi tensors and Ricci curvature, Math. Ann.252 (1980) 1-26. Zbl0423.53035MR590545
  6. [6] Greene, R. and Wu, H., Lipschitz convergence of Riemannian manifolds, Pacific. J. Math.133 (1988) 119-143. Zbl0646.53038MR917868
  7. [7] Gromov, M., Structures métriques pour les variétés riemanniennes, rédiges par J. Lafontrain et P. Pansu, Textes math., nl Cedic/Fernand-Nathan, 1981. Zbl0509.53034MR682063
  8. [8] Heintze, E. and Karcher, H., A general comparison theorem with applications to volume estimate for submanifolds, Ann. Sci. Ecole Norm. Sup.11 (1978) 451-470. Zbl0416.53027MR533065
  9. [9] Kasue, A., Applications of Laplacian and Hessian comparison theorems, Advanced Studies in Pure Math., 3, Geometry of Geodesics and Related Topics, 333-386. Zbl0578.53029MR758660
  10. [10] Katsuda, A., Gromov's convergence theorem and its application, Nagoya Math. J.100 (1985) 11-48. Zbl0587.53043MR818156
  11. [11] Lawson, H.B., The unknottedness of minimal embeddings, Invent. Math.11 (1970) 183-187. Zbl0205.52002MR287447
  12. [12] Lawson, H.B. and Michelsohn M.-L., Embedding and surrounding with positive mean curvature, Invent. Math.77 (1984) 399-419. Zbl0555.53027MR759265
  13. [13] Moore, J.D. and Schulte, T., Minimal disks and compact hypersurfaces in Euclidean space, Proc. Amer. Math. Soc.94 (1985) 151-168. Zbl0574.53038MR784186
  14. [14] Peters, S., Convergence of Riemannian manifolds, Compositio Mathematica.62 (1987) 3-16. Zbl0618.53036MR892147
  15. [15] Sakai, T., Comparison and finiteness theorems in Riemannian geometry, Advanced Studies in Pure Math., 3, Geometry of Geodesics and Related Topics, 125-181. Zbl0578.53028MR758652
  16. [16] Sha, J.P., p-convex riemannian manifolds, Invent. Math. 83 (1986) 437-447. Zbl0563.53032MR827362
  17. [17] Sha, J.P., Handlebodies and p-convexity, J. Differential Geometry.25 (1987) 353-361. Zbl0661.53028MR882828
  18. [18] Wu, H., Manifolds of partially positive curvature, Indiana Univ. Math. J.36 (1987) 525-548. Zbl0639.53050MR905609
  19. [19] Yamaguchi, T., On the lengths of stable Jacobi fields, Preprint. Zbl0703.53039MR1040536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.